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Abstract

This paper studies the model identification problem of k-double auctions between one buyer

and one seller when the transaction price, rather than the traders’ bids, can be observed. Given

that only the price data is available, I explore an identification strategy that utilizes the double

auctions with extreme pricing weight (k = 1 or 0) and exclusive covariates that shift only one

trader’s value distribution to identify both the buyer’s and the seller’s value distributions

nonparametrically. First, as each exclusive covariate can take at least two values, the buyer’s

and the seller’s value distributions are partially identified from the price distribution for k = 1

or k = 0. The identified set is sharp and can be easily computed. I provide a set of sufficient

conditions under which the traders’ value distributions are point identified. Second, when

the exclusive covariates are continuous, it is shown that the buyer’s and the seller’s value

distributions will be uniquely determined by a partial differential equation that only depends

on the price distribution, provided that the value distributions are known for at least one value

of the exclusive covariates.
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JEL Classification: C14, C57, C78, D44, D82

1 Introduction

Double auctions are one of the most common exchange institutions. They permit both offers to buy

and offers to sell and usually set the transaction price according to traders’ offers from both sides.

They are extensively used in many field markets such as stock markets and commodity markets.

∗ I am grateful to Joris Pinkse and Sung Jae Jun for their guidance and encouragement. I also thank Marc Henry, Nail

Kashaev, Nianqing Liu, Yao Luo, and Yuanyuan Wan for helpful comments and discussions. All remaining errors are

mine. Comments are welcome. (hyl5131@psu.edu)
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Recent theoretical studies on double auctions within a game theoretic framework, e.g. Chatterjee

and Samuelson (1983), Myerson and Satterthwaite (1983), Leininger, Linhart, and Radner (1989),

Satterthwaite and Williams (1989, 2002), Kadan (2007), provide researchers and practitioners with

insights about the behavioral theory of double auction markets. Meanwhile, there has been a

large body of work which examines identification and estimation of one-sided auctions. Examples

includes Laffont, Ossard, and Vuong (1995), Laffont and Vuong (1996), Donald and Paarsch (1996),

Guerre, Perrigne, and Vuong (2000, 2009), Li, Perrigne, and Vuong (2000, 2002), Athey and Haile

(2002), Haile, Hong, and Shum (2003), Haile and Tamer (2003), Hendricks, Pinkse, and Porter

(2003), McAdams (2008), Li and Zheng (2009), An, Hu, and Shum (2010), Krasnokutskaya (2011),

Tang (2011), Marmer and Shneyerov (2012), Hubbard, Li, and Paarsch (2012), Hu, McAdams, and

Shum (2013), Gentry and Li (2014). However, in contrast to the intensive investigation of one-sided

auctions, the empirical analysis of double auction models is still in its infancy.

Motivated by the lack of identification and estimation results for double auction model, I study

a simple yet important type of double auctions called k-double auctions with a single buyer and

a single seller, which employs a pricing rule that takes the weighted average of the two traders’

offers as the transaction price. Such a double auction model is closely related to the structural

analysis of noncooperative bargaining models with incomplete information (see, e.g. Sieg, 2000;

Watanabe, 2006; Merlo, Ortalo-Magne, and Rust, 2015) and has a wide range of applications

including negotiations, dispute settlements, arbitration for sport,1, and real estate sales. Previous

work (Li and Liu, 2015), within the independent private value paradigm, obtained theoretical results

for nonparametric identification and estimation of the buyer’s and the seller’s value distributions if

their bids are observed, both in the case in which bids are observed for all double auctions and

when they are observed only in double auctions where transactions take place. In this paper, I

pursue the problem of nonparametrically identifying both traders’ value distributions if I only

observe the transaction price in each double auction with a transaction. It is common in many

applications that the researchers can only access limited sets of observables for reasons such as

the design of the trading mechanism. For markets governed by the double auction institution, the

transaction prices rather than the traders’ offers are usually more readily available. Limiting the

observables to the transaction price makes identification more appealing but also more difficult.

A similar problem has been addressed for one-sided auctions, see, e.g. Athey and Haile (2002),

Adams (2007). However, the transaction price in double auctions depends on both the buyer’s and

the seller’s strategic offers at the same time. This creates greater challenges to identify the traders’

value distributions from the price data alone.

As part of my research, I focus on the case in which the pricing weight k = 1 or k = 0, noting that

my results can be readily extended to the situations in which k is observed and equals one or zero

1Examples of arbitration similar to the k-double auction mechanism under review include the final offer arbitration

employed by Major League Baseball.
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some of the time. Based on the distribution of the transaction price in double auctions with k = 1

or k = 0, under mild assumptions, I give the sharp bound for the identified value distributions

of the buyer and the seller on part of their supports, provided that there exist exogenous value

distribution shifters Y for the buyer and Z for the seller, while point identification can be reached

under stronger conditions. I further establish identification of the two value distributions when the

value distribution shifters are continuously distributed.

The rest of this paper proceeds as follows. Section 2 presents the k-double auction model. In

Section 3, I exploit exclusion restrictions to achieve nonparametric identification of the buyer’s and

the seller’s private value distributions, mainly in the case where the pricing weight on the buyer’s

bid is equal to 1. Section 4 concludes with a discussion of possible estimation approaches. The

supplementary results and the proofs are collected in the appendix.

2 The Sealed-Bid k-Double Auction Model

Consider a sealed-bid k-double auction where a single indivisible good is traded between a buyer

and a seller. The value of the good to the buyer is V and the reservation value to the seller is C.

Both traders are risk neutral expected utility maximizers. In the auction, both the buyer and the

seller simultaneously submit sealed bids B and S, respectively. If B > S, the transaction is struck

at price P = kB + (1− k)S where 0 6 k 6 1. The seller’s utility is P− C and the buyer’s utility is

V − P. If B < S, there is no transaction occurring and each gets zero utility. Each trader knows

his own private value and observes some auction-specific covariates X. However, he only knows

his adversary’s value is drawn from a certain distribution. The joint distribution of these random

variables and the pricing rule (including the pricing weight k) are all common knowledge between

the buyer and the seller.

I impose the following assumption on the traders’ value distributions.

Assumption A (Independent Private Value).

(i) V and C are independent conditional on X;

(ii) The conditional distributions of V and C given X = x, FV( · | x) and FC( · | x), are absolutely

continuous with densities fV( · | x) and fC( · | x) on the same support [c(x), v(x)] ⊂ R+.

Assumption A requires that both traders’ values are conditionally independent and drawn from

absolutely continuous distributions which share the same bounded supports. It allows uncondi-

tional correlation between V and C as long as the auction-specific covariates X account for all the

dependence structure.

Denote by βB( · , x) : [c(x), v(x)] → R+ and βS( · , x) : [c(x), v(x)] → R+ the respective strate-

gies of the buyer and the seller. The Bayesian Nash equilibrium (BNE) concept is adopted through-

out. However, Leininger, Linhart, and Radner (1989) and Satterthwaite and Williams (1989) showed
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that there can exist multiple BNE’s in a given k-double auction. To exclude some irregular cases

and focus on a certain class of equilibria which are well-behaved as described in Chatterjee and

Samuelson (1983), the following restrictions are imposed on the equilibrium under consideration

here:

Assumption B (Regular equilibrium). The equilibrium strategy profile (βB, βS) satisfies, for any x,

(i) βB( · , x) and βS( · , x) are continuous and strictly increasing;

(ii) for traders who have positive probability of trade under the strategy profile, βB( · , x) and βS( · , x) are

continuously differentiable;

(iii) for traders who have zero probability of trade under the strategy profile, βB(v, x) = v and βS(c, x) = c.

An equilibrium is called “regular” if it satisfies Assumption B. Assumption B restricts me to the

equilibria with strictly monotonic and (piecewise) differentiable strategies. Here the equilibrium

strategies can depend on covariates X in two ways. First, the equilibrium strategies will change as

the model primitives such as the value distributions or the pricing weight k vary. Second, when

the k-double auction with given model primitives has multiple regular equilibria, the equilibrium

strategies can differ as the covariates X affect the equilibrium selection.

Let GBk( · | x) and GSk( · | x) denote the respective distributions of buyer’s and seller’s equi-

librium bids conditional on X = x, which are induced by the value distributions and some

equilibrium strategy profile (βBk, βSk). The k in the subscript is used to indicate the dependence

of these functions on the pricing weight k. Since the regular equilibrium strategies are strictly

increasing, it follows that FV(v | x) = GBk(βBk(v, x) | x), FC(c | x) = GSk(βSk(c, x) | x), and the re-

spective supports of GBk and GSk are given by [bk(x), bk(x)] = [βBk(c(x), x), βBk(v(x), x)] and

[sk(x), sk(x)] = [βSk(c(x), x), βSk(v(x), x)]. As shown in Li and Liu (2015), the regular equilibrium

bids of the buyer and of the seller are independent conditional on X and their supports should

satisfy bk(x) 6 sk(x) < bk(x) 6 sk(x). Because the transaction price P is defined only when the

buyer’s bid is greater than the seller’s bid, the support of P is [sk(x), bk(x)]. Therefore, by the

conditional independence of B and S, the density function of the transaction price is

hk(p | x) = ak(x)
∫ Tk(p,x)

0
gBk(p + (1− k)t | x)gSk(p− kt | x)dt, (2.1)

where gBk( · | x) and gSk( · | x) are the corresponding densities of GBk( · | x) and GBk( · | x), ak(x) is

a constant which makes
∫ bk(x)

sk(x) hk(p | x)dp = 1, and the upper limit of the integral is Tk(p, x) =

min
(

bk(x)−p
1−k , p−sk(x)

k

)
.
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3 Nonparametric Identification

In this section, I study the identification of the buyer’s and the seller’s conditional private value

distributions, FV( · | x) and FC( · | x). In contrast to Li and Liu (2015), here I assume the econome-

tricians have less information about the traders’ behavior—rather than the bids of the buyer and

the seller, they can only observe the final transaction price P, auction-specific covariates X and the

pricing rule parameter k.

Li and Liu (2015) showed that given that the traders’ private values are independent, the value

distributions are nonparametrically identified as long as the econometricians can observe the bids

of the buyer and the seller (at least those bids with a successful transaction). So a way of identifying

the value distributions is using (2.1) to recover the bid distributions from the price distribution

then apply the conclusion of Li and Liu (2015). However, this approach faces challenges.

First, the difficulty comes from the fact that the price distribution is obtained by projecting the

joint bid distribution in a certain direction so the price distribution compresses the information

of both the buyer’s and the seller’s bid distributions. It is usually impossible to recover a two-

dimensional bid distribution from a one-dimensional price distribution, even if both traders’ bids

are independent (in this case, it aims to recover two one-dimensional bid distributions).

Second, although the price distribution can be treated as a weighted mixture of the two bid

distributions because P = kB + (1 − k)S, the methods that are typically used to identify the

component distributions in finite mixture models will not be applicable due to special features

of double auction models. In double auctions, the transaction price is defined only when the

buyer’s bid is greater than the seller’s bid. This means that the price distribution is obtained from a

truncated bid distribution. The original independence between the buyer’s and the seller’s bids

breaks down because of the truncation. Therefore, the deconvolution method that is usually used to

decompose the mixture distribution does no longer work without the independence condition. In

addition, the parameter k does not only play a role as a weight used to calculate the price in double

auction transaction and thereby a mixture weight, but it also directly determines the buyer’s and

the seller’s equilibrium bidding strategies and therefore the equilibrium bid distributions. So any

changes in the value of k will inevitably change the two bid distributions. As a result, the method

employed in many studies about finite mixture models, which rely on the existence of a variable

that shifts the mixture weight without affecting the component distributions, cannot be used in the

double auction case.

In view of these difficulties, I explore a different identification strategy based on extreme values

of pricing weight and exclusion restrictions to identify the buyer’s and the seller’s conditional

private value distributions nonparametrically.

To start, I posit the following assumption on the observed pricing rule parameter k.

Assumption C. There exist double auctions with pricing weight k = 0 or k = 1.
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This assumption requires that the econometricians are able to observe the double auctions in

which one of the two traders has full bargaining power to unilaterally set the final transaction

price once a successful transaction takes place. This condition is satisfied in many applications, for

example, either the buyer or the seller can propose a take-it-or-leave-it offer.

The pricing weight k taking the extreme values brings several benefits. As shown by Satterth-

waite and Williams (1989), when k = 0 or k = 1, the k-double auction game has a unique regular

equilibrium, so specifying an equilibrium selection mechanism can be avoided. Meanwhile, in

these two extreme cases, the strategies in that equilibrium have closed-form expressions, which

allows me to interpret the corresponding equilibrium bid distributions as well as the distribution of

transaction price in terms of the value distributions and then establish a direct connection between

the observables and the model primitives of interest. Precisely, according to Satterthwaite and

Williams (1989): When k = 1, the seller will choose the weakly dominant strategy of bidding his

private value truthfully, therefore the seller’s equilibrium inverse bidding function is β−1
S1 (s, x) = s

and the buyer’s equilibrium inverse bidding function is given by

β−1
B1 (b, x) = b + 1(b > s1(x)) · λ(b, x),

where λ( · , x) = FC( · | x)/ fC( · | x). Then by (2.1), the density function of the transaction price

when k = 1 is

h1(p | x) = a1(x)
∫ p−s1(x)

0
gB1(p | x)gS1(p− t | x)dt

= a1(x)gB1(p | x)GS1(p | x)

= a1(x)FC(p | x) fV(p + λ(p, x) | x) [1 + ∂1λ(p, x)] (3.1)

for s1(x) 6 p 6 b1(x), where ∂1λ denotes the partial derivative of λ with respect to the first

argument. When k = 0, the buyer plays the truth-telling strategy in the unique regular equilibrium,

so the buyer’s equilibrium inverse bidding function is β−1
B0 (b, x) = b and the seller’s equilibrium

inverse bidding function is

β−1
S0 (s, x) = s− 1(s 6 b0(x)) · δ(s, x),

where δ( · , x) = [1− FV( · | x)]/ fC( · | x). As a result, the price density when k = 0 is

h0(p | x) = a0(x)gS0(p | x) [1− GB0(p | x)]

= a0(x)[1− FV(p | x)] fC(p− δ(p, x) | x) [1− ∂1δ(p, x)] (3.2)

for s0(x) 6 p 6 b0(x). Here ∂1δ is the partial derivative of δ with respect to the first argument.
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Another key identification restriction is a source of variation in one trader’s value distribution

that leaves the other trader’s value distribution unchanged. Suppose that the observed covariates

can be partitioned into three parts X = (Y, Z, W) where Y ∈ Rdy , Z ∈ Rdz and W ∈ Rdw , and

suppose Y and Z only affect the value distribution of one trader. I assume the following exclusion

restriction holds.

Assumption D (Exclusion Restriction). For any realization x = (y, z, w):

(i) c(y, z, w) = c(w), v(y, z, w) = v(w);

(ii) FV(v | y, z, w) = FV(v | y, w) and FC(c | y, z, w) = FC(c | z, w) for any v, c ∈ [c(w), v(w)].

According to Assumption D, Y only affects the buyer’s value distribution while Z only affects the

seller’s. However, the exclusive covariates Y and Z only change the shape but not the supports of

the private value distributions.

For simplicity, w is dropped from the notation unless specifically stated otherwise; all quantities

considered are implicitly functions of w. To illustrate the idea of the identification strategy, I will

focus on identification for the k = 1 case. Symmetric results for the k = 0 case can be obtained by

using similar assumptions and arguments (see Appendix A.1).

3.1 Identification with Binary-valued Z

Let Y and Z denote the respective supports of Y and Z. To guarantee the existence of a regular

equilibrium when k = 1, i.e. to ensure the buyer has a strictly increasing and differentiable bidding

strategy, I assume that the seller’s conditional value distribution FC( · | z) satisfies the following

assumption.

Assumption E. For any z ∈ Z , λ(c, z) = 0, and λ( · , z) is continuously differentiable with 0 <

∂1λ(c, z) < ∞ for all c ∈ [c, v].

Such an admissibility condition, which requires that the seller’s conditional value distribution

admits a continuously differentiable and strictly decreasing reverse hazard rate, is usually imposed

in the literature about one-sided auctions and double auctions (see Satterthwaite and Williams,

1989). Then it can be shown first that:

Lemma 1. Under Assumptions A to E, for any y ∈ Y and any z ∈ Z ,

(i) s1(y, z) = c, and h1(c | y, z) = 0;

(ii) b1(y, z) = b1(z) which solves b1(z) + λ(b1(z), z) = v.

Proof. See Appendix A.2.

According to this lemma, when k = 1, all price distributions have identical lower endpoints of

their support at c, where the price distribution has zero density. It is also implied that the upper
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endpoint of the price distribution support only depends on the value of Z which affects the seller’s

value distribution. These properties are mainly attributed to the exclusion restrictions assumed in

Assumption D.

Given this result, for y∗, y∗∗ ∈ Y and z ∈ Z , if I define2

Γ1(p, z) ≡ lim
q→c

[
h1(p | y∗, z)
h1(q | y∗, z)

/
h1(p | y∗∗, z)
h1(q | y∗∗, z)

]
(3.3)

for c < p < b1(z) and let Γ1(c, z) ≡ limp→c Γ1(p, z), Γ1(b1(z), z) ≡ limp→b1(z)
Γ1(p, z), then it

follows from (3.1) that

Γ1(p, z) =
fV(p + λ(p, z) | y∗)
fV(p + λ(p, z) | y∗∗) ·

fV(c | y∗∗)
fV(c | y∗)

. (3.4)

Because the function Γ1 only depends on the price density h1 by definition, (3.4) means that the

likelihood ratio of the buyer’s value distributions in the k-double auction model as specified in

Section 2 is identified up to scale. Note that the buyer’s unobservable private value can be inferred

from the identified Γ1( · , z) function if it is invertible. So in order to have invertibility, I assume that

for some values of Y, the buyer’s conditional value distribution possesses the monotone likelihood

ratio property. Specifically,

Assumption F. There exist y∗ 6= y∗∗ in Y such that fV( · | y∗)/ fV( · | y∗∗) is continuously differentiable

with negative derivative on [c, v].

Therefore, for the values y∗ and y∗∗ of covariate Y such that Assumption F holds, I have:

Lemma 2. Under Assumptions A to F,

(i) Γ1( · , z) is continuously differentiable with negative derivative on [c, b1(z)] for any z ∈ Z ;

(ii) Γ1(c, z∗) = Γ1(c, z∗∗) = 1 and Γ1(b1(z∗), z∗) = Γ1(b1(z∗∗), z∗∗) for any z∗, z∗∗ ∈ Z .

Proof. See Appendix A.3.

Lemma 2 shows some restrictions that the specified nonparametric double auction model

imposes on the observable conditional distribution of the transaction price in terms of Γ1. First, con-

dition (i) mainly points out that the model implies a strictly decreasing Γ1( · , z). This is mainly due

to the monotonicity of the reverse hazard rate of the seller’s value distribution and the monotonicity

of the likelihood ratio of the buyer’s value distribution. Together with the monotonicity, condition

(ii) implies that the range of Γ1( · , z), whose domain coincides with the support of transaction price,

should keep constant as the value of the exclusive covariate for seller’s value distribution changes.

I will start the discussion about identifying the traders’ value distributions by showing a few

important properties of the traders’ conditional value distributions that can rationalize a given

price data by the k-double auction model.

2I take the limit as q→ c rather than directly take q = c because the price has zero density at c if the price is generated

from the k-double auction specified in Section 2. Here y∗, y∗∗ are regarded as fixed in order to simplify the notation.
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Suppose that for y∗ 6= y∗∗ in Y and z∗ 6= z∗∗ in Z , the functions Γ1( · , z∗) and Γ1( · , z∗∗) induced

by the price densities h1( · | y, z) with y ∈ {y∗, y∗∗} and z ∈ {z∗, z∗∗}, satisfy the conditions of

Lemma 2; that is, both Γ1( · , z∗) and Γ1( · , z∗∗) are strictly decreasing and have the same range.

Then, for any p in Γ1( · , z∗)’s domain [c, b1(z)], there is a unique ψ(p) ∈ [c, b1(z∗∗)] such that3

Γ1(p, z∗) = Γ1(ψ(p), z∗∗). (3.5)

By the implicit function theorem, ψ( · ) defined above is continuously differentiable and strictly

increasing and it satisfies ψ(c) = c. Suppose that the price data is generated by the k-double auction

model, then under Assumptions A to E, by (3.4), equation (3.5) is equivalent to

p + λ(p, z∗) = ψ(p) + λ(ψ(p), z∗∗). (3.6)

Because in a k-double auction with k = 1, when the seller has private value distribution FV( · | z),
the equilibrium inverse bidding function for the buyer is b + λ(b, z) where b is the bid, (3.6) means

that a buyer who bids ψ(p) when facing a seller with value distribution FC( · | z∗∗), will have the

same private value as a buyer who bids p when the seller’s value distribution is FC( · | z∗).
Moreover, (3.6) directly implies

fV(p + λ(p, z∗) | y∗) = fV(ψ(p) + λ(ψ(p), z∗∗) | y∗),

and differentiating both sides of (3.6) with respect to p yields

1 + ∂1λ(p, z∗) = [1 + ∂1λ(ψ(p), z∗∗)] · ψ′(p).

Then, by combining these two equations and (3.1), I have for any p ∈ [c, b1(z∗)],

FC(ψ(p) | z∗∗)
FC(p | z∗) =

a1(y∗, z∗)
a1(y∗, z∗∗)

· h1(ψ(p) | y∗, z∗∗)
h1(p | y∗, z∗)

ψ′(p) =
a1(y∗, z∗)
a1(y∗, z∗∗)

m(p), (3.7)

where

m(p) ≡ h1(ψ(p) | y∗, z∗∗)
h1(p | y∗, z∗)

ψ′(p).

Equation (3.7) requires the ratio FC(ψ( · ) | z∗∗)/FC( · | z∗) to be proportional to the function m( · ),
which is determined by the price distributions, on the interval (c, b1(z∗)]. It indeed imposes another

restriction besides (3.6) on the seller’s conditional value distribution that can rationalizes the

observed price distribution. This is because by the exclusion restrictions, the same conditional

value distribution for the buyer generates the price densities h1( · | y∗, z∗) and h1( · | y∗, z∗∗) with the

3In fact, ψ(p) = Γ−1
1 (Γ1(p, z∗), z∗∗) where Γ−1

1 ( · , z∗∗) is the inverse function of Γ1( · , z∗∗) provided that Γ1( · , z∗∗) is

strictly monotone.
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seller’s conditional value distributions FC( · | z∗) and FC( · | z∗∗), respectively. However, it follows

from (3.1) that

FV(v | y) =
1

a1(y, z)

∫ b

c

h1(u | y, z)
FC(u | z)

du,

where b solves b + λ(b, z) = v. It suggests that any conditional value distribution for the seller that

satisfies Assumption E will automatically induce a conditional value distribution for the buyer,4

namely

F̃V(v | y, z) =

[∫ b1(z)

c

h1(u | y, z)
FC(u | z)

du

]−1 ∫ b

c

h1(u | y, z)
FC(u | z)

du, v ∈ [c, v], (3.8)

and F̃V(v | y, z) rationalizes a given price density by a k-double auction with k = 1. So the impli-

cation of condition (3.7) is to make sure that, the buyer’s conditional value distribution induced

by FC( · | z∗) and h1( · | y∗, z∗) is the same as the one induced by FC( · | z∗∗) and h1( · | y∗, z∗∗), and

therefore it does not depend on Z. Meanwhile, because any given seller’s conditional value distri-

bution induces an associated conditional value distribution for the buyer in the above way, when I

try to identify both traders’ value distributions, it suffices to consider only the one for the seller.

These restrictions are summarized by the following theorem.

Theorem 1. Under Assumptions A to F, h1( · | y, z) can be rationalized by sealed-bid k-double auction

with k = 1 for some FV( · | y), y ∈ {y∗, y∗∗} and FC( · | z), z ∈ {z∗, z∗∗} if and only if FC( · | z∗) and

FC( · | z∗∗) satisfy equations (3.6) and (3.7).

Proof. See Appendix A.4.

Theorem 1 is important because it shows that equations (3.6) and (3.7) fully characterize

the identified set of the model primitives. On one hand, by showing that only those seller’s

conditional value distributions satisfying (3.6) and (3.7) are consistent with price data, it gives

necessary conditions for the private value distributions that can rationalize the given distribution

of transaction price. On the other hand, it also shows that, under those model assumptions, any

seller’s conditional value distributions that satisfy (3.6) and (3.7) can generate the given price

distribution. This indicates that such an identified set is actually sharp.

The identified set characterized by (3.6) and (3.7) can be easily computed. To see that, first

rewrite (3.7) as

FC(ψ(p) | z∗∗) = a1(y∗, z∗)
a1(y∗, z∗∗)

· FC(p | z∗)m(p),

and then taking the derivative with respect to p yields

fC(ψ(p) | z∗∗) = a1(y∗, z∗)
a1(y∗, z∗∗)

· fC(p | z∗)m(p) + FC(p | z∗)m′(p)
ψ′(p)

.

4By definition, such a conditional value distribution for the buyer which is induced by the price density and a given

seller’s conditional value distribution will depend not only the covariate Y but also the covariate Z.
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Plugging these two into (3.6) will give

m′(p) [λ(p, z∗)]2 + [(p− ψ(p))m(p)]′ λ(p, z∗) + (p− ψ(p))m(p) = 0 (3.9)

for p ∈ [c, b1(z∗)]. By the construction of (3.9), FC( · | z∗) and FC( · | z∗∗) satisfy (3.6) and (3.7) if and

only if FC( · | z∗) satisfies (3.9) (and induces FC( · | z∗∗) according to (3.6) or (3.7)). This allows me

to obtain the identified set by looking for the solution to (3.9). Since ψ( · ) and m( · ) are identified

from the price distribution, (3.9) only serves to determine λ( · , z∗). Interestingly, for any fixed

p ∈ (c, b1(z∗)], (3.9) is a quadratic equation whenever m′(p) 6= 0,5 so it will have two real solutions

λ(p, z∗) =
−[(p− ψ(p))m(p)]′ ±

√
{[(p− ψ(p))m(p)]′}2 − 4(p− ψ(p))m(p)m′(p)

2m′(p)
(3.10)

provided that ∆1(p) ≡ {[(p− ψ(p))m(p)]′}2− 4(p−ψ(p))m(p)m′(p) > 0. Then, the identified set

for λ( · , z∗), or equivalently for FC( · | z∗), can be obtained by collecting all functions that conform

to the form of (3.10) among those specified by the model assumptions.

It should be noticed that the condition ∆1(p) > 0 for all p ∈ (c, b1] is indeed another empirical

implication which can be potentially used to test the model. This is because if the observed

prices come from the regular equilibrium of a k-double auction with k = 1 and conditional value

distributions determined by Assumptions A, D, E and F, then λ( · , z∗) corresponding to the true

conditional value distribution for the seller given Z = z∗ will be a solution to equation (3.9), so it

must be true that ∆1(p) > 0.6

Furthermore, utilizing the quadratic feature of (3.9), I can find additional conditions on the

model structure, under which the identified set for the seller’s conditional value distributions (on

the part of support that permits positive probability of trade) will collapse to a singleton so that the

model is point identified. The following assumption and theorem provide an example.

Assumption G. Let ξ(p, z) ≡ p+λ(p, z). FC( · | z∗) and FC( · | z∗∗) satisfy ∂1ξ−1(v, z∗) > ∂1ξ−1(v, z∗∗)

for any v ∈ (c, v], where ξ−1( · , z) is the inverse function of ξ( · , z).

Recall that ξ( · , z) defined above is the buyer’s inverse bidding function in the regular equilib-

rium of a k-double auction with k = 1 when the seller’s value distribution is FC( · | z), so ξ−1(v, z)

gives the equilibrium bid of a buyer with private value v. Therefore, condition ∂1ξ−1(v, z∗) >

∂1ξ−1(v, z∗∗) for all v > c, means that the seller’s conditional value distributions should be such

that the buyer will choose a steeper bidding strategy when Z = z∗ than when Z = z∗∗.

5If m′(p) = 0 but [(p − ψ(p))m(p)]′ 6= 0, (3.9) will become a linear equation and has a unique solution λ(p, z∗) =

−(p − ψ(p))m(p)/[(p − ψ(p))m(p)]′ which coincides with the limit of original quadratic equation’s solution{
−[(p− ψ(p))m(p)]′ + sgn ([(p− ψ(p))m(p)]′)

√
∆1(p)

}
/[2m′(p)] as p approaches the zeros of m′( · ).

6This can also be seen by alternatively showing that ∆1(p) =
{

m(p)
[

λ(p,z∗)
λ(ψ(p),z∗∗)ψ′(p)− λ(ψ(p),z∗∗)

λ(p,z∗)

]}2
> 0.
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This assumption is testable. It can be done by comparing the value of the derivative of ψ( · )
with unity. To see that, for any p ∈ (c, b1(z∗)], let v ∈ (c, v] be the buyer’s private value such

that v = ξ(p, z∗) = p + λ(p, z∗). Therefore, p = ξ−1(v, z∗) and it follows from (3.6) that ψ(p) =

ξ−1(v, z∗∗). Then, by (3.6),

ψ′(p) =
∂1ξ(p, z∗)

∂1ξ(ψ(p), z∗∗)
=

∂1ξ(ξ−1(v, z∗), z∗)
∂1ξ(ξ−1(v, z∗∗), z∗∗)

=
∂1ξ−1(v, z∗∗)
∂1ξ−1(v, z∗)

.

Since the buyer’s equilibrium bidding strategy ξ−1( · , z) is strictly increasing, so I have the condition

of Assumption G is satisfied if and only if ψ′(p) < 1 for all p ∈ (c, b1(z∗)].

Assumption G in fact imposes some restrictions on the coefficients of equation (3.9) so that

under all the model assumptions there exists only one possible λ( · , z∗) that satisfies this quadratic

equation. With the rest assumptions, now it can be shown that:

Theorem 2. Under Assumptions A to G, FC( · | z∗) is identified on [c, b1(z∗)] and FC( · | z∗∗) is identified

on [c, b1(z∗∗)].

Proof. See Appendix A.5.

The conclusion of Theorem 2 holds if Assumption G is replaced by a weaker one which

calls for FC( · | z∗) and FC( · | z∗∗) that satisfy (i) ξ−1(v, z∗) > ξ−1(v, z∗∗) for all v ∈ (c, v], and (ii)

FC(ξ
−1( · , z∗∗) | z∗∗)/FC(ξ

−1( · , z∗) | z∗) is strictly decreasing on (c, v].7 Condition (i) suggests that

any buyer will always bid more aggressively when Z = z∗ than when Z = z∗∗ by offering a

higher price. This is the case if and only if λ(c, z∗∗) > λ(c, z∗) for all c ∈ (c, b1(z∗)], or equivalently,

FC( · | z∗∗)/FC( · | z∗) is strictly decreasing on (c, b1(z∗)].8 Meanwhile, for condition (ii), because

the seller will bid his true private value in regular equilibrium in a k-double auction with k = 1

and because the transaction takes place only when the buyer’s bid is no less than the seller’s bid,

FC(ξ
−1(v, z∗) | z∗) and FC(ξ

−1(v, z∗∗) | z∗∗) represent the respective trade probabilities of a buyer

with value v in the cases of Z = z∗ and Z = z∗∗, and therefore, this condition requires that the ratio

of these two trade probabilities must be decreasing in the buyer’s valuation for the good. Similarly,

for any p ∈ (c, b1(z∗)], if I let v = ξ(p, z∗) = p+λ(p, z∗) be the buyer’s private value, then condition

(i) is equivalent to p > ψ(p) as p = ξ−1(v, z∗) and (3.6) implies ψ(p) = ξ−1(v, z∗∗), and condition

(ii) is equivalent to m′(p) < 0 because it follows from (3.7) that m(p) ∝ FC(ψ(p) | z∗∗)/FC(p | z∗) =
FC(ξ

−1(v, z∗∗) | z∗∗)/FC(ξ
−1(v, z∗) | z∗). So these two conditions can be tested by examining the

corresponding properties of functions ψ( · ) and m( · ).
There are a few points regarding Theorem 1 and Theorem 2 that need further clarification.

First, the conclusions of there two theorems only need two different values for the exclusive

7These two conditions are implied by Assumption G (see the proof in Appendix A.5) but not vise versa.
8Refer to Shaked and Shanthikumar (2007) about the latter equivalence.
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covariate Z. This is useful in establishing nonparametric identification no matter whether the

covariate Z is discrete or continuous. Second, these two theorems aim to recover the buyer’s and

the seller’s conditional value distributions from the price densities h1( · | y, z) only for y ∈ {y∗, y∗∗}
and z ∈ {z∗, z∗∗}. When the supports of the covariates, espcially Z , are richer and allow for more

variation in the covariates, it is possible to shrink the identified set that Theorem 1 gives by choosing

other values for Y and Z. Finally, it should be pointed out that Assumption G is sufficient but

not necessary for point identifying the seller’s conditional value distributions (see the example in

Appendix A.7 where the condition is violated but λ( · , z∗) is still point identified).

3.2 Identification with Continuous Z

When the covariate Z that exclusively shifts the seller’s value distribution is continuous, it is feasible

in theory but practically inefficient to establish the identification of the seller’s value distribution,

by repeatedly applying the results from the previous subsection to investigate all pairs of Z’s values

in its support. But it will be shown next that the property of Z varying continuously provides a

shortcut to identify the seller’s conditional value distribution for all z ∈ Z .

For ease of discussion, I will assume that Z is scalar (i.e. dz = 1) and the support Z is an interval

[z, z] in R for the time being.

First, as a supplement to Assumption E, I assume that:

Assumption H. When Z is continuous, λ(c, z) is continuously differentiable in z.

With this assumption, Lemma 2 is augmented to include the following conclusion.

Lemma 3. When Z is continuous, under Assumptions A to F and H, Γ1(p, z) is continuously differentiable

in z.

Now suppose the function Γ1(p, z) defined for z ∈ Z and p ∈ [c, b1(z)] satisfies the conditions

in Lemmas 2 and 3, then define9

`1(p, z) =
∂2Γ1(p, z)
∂1Γ1(p, z)

, z ∈ Z , p ∈ [c, b1(z)], (3.11)

where ∂1Γ1 and ∂2Γ1 are the partial derivatives of Γ1 with respect to the first and the second

arguments, respectively. By (3.4), I have

`1(p, z) =
∂2λ(p, z)

1 + ∂1λ(p, z)

which can be written as the following form

∂2λ(p, z)− `1(p, z) · ∂1λ(p, z) = `1(p, z), (3.12)

9`1(p, z) is always well-defined because ∂1Γ1(p, z) < 0 by Lemma 2.
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where ∂2λ denotes the partial derivative of λ with respect to the second argument. Equation (3.12)

turns out to be a first-order linear inhomogeneous partial differential equation about λ, which

should be satisfied by all the conditional value distributions for the seller that can rationalize the

price distribution. Thus, applying the theory of partial differential equations will give the following

identification result when Z is continuous.

Theorem 3. Under Assumptions A to F and H, if λ( · , z∗) is known for some z∗ ∈ Z , then λ( · , · ) is

identified on the set {(p, z) : z ∈ Z , p ∈ [c, b1(z)]}.

Proof. See Appendix A.6.

According to Theorem 3, I can pin down the value of λ( · , z) for all other values of z in the

support Z by solving the partial differential equation (3.12), as long as λ( · , z) or FC( · | z) is

identified for just one realization of covariate Z, which can be done by applying Theorem 1 or

Theorem 2. As a result, the seller’s conditional value distribution is identified as

FC(c | z)
FC(b1(z) | z)

= exp

(
−
∫ b1(z)

c

1
λ(u, z)

du

)
, z ∈ Z , c ∈ [c, b1(z)],

and the buyer’s conditional value distribution is given by (3.8) for y ∈ {y∗, y∗∗}.
Theorem 3 holds for the case where covariate Z is vector-valued (i.e. dz > 1) and the support Z

takes the form of [z1, z1]× · · · × [zdz
, zdz ] ⊂ Rdz . This is because, by taking the partial derivatives of

Γ1( · , · ) and λ( · , · ) with respect to each component of Z instead, I can define a series of functions

similar to (3.11) and construct a system of partial differential equations similar to (3.12), and then

it can be shown that the solution to the system of partial differential equations is still uniquely

determined by a boundary value condition such as a known λ( · , z∗).

4 Conclusion

This paper addresses the problem of nonparametric identification of the buyer’s and the seller’s

value distributions in k-double auctions given only the transaction price is observed. I use exclusion

restrictions which take the form of two exogenous covariates that respectively shift the buyer’s and

the seller’s value distributions. I show that in the k-double auctions with either k = 1 or k = 0, both

traders’ value distributions can be partially identified in general from the distribution of transaction

price, as long as both exclusive value distribution shifters can take at least two distinct values.

Besides showing my bound for the identified set is sharp, I provide some sufficient conditions

under which the traders’ value distributions are point identified. When the value distribution

shifters are continuous, I also show that the traders’ value distributions can be recovered by solving

a partial differential equation that only depends on the observed price distribution.
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A nonparametric estimation method for the buyer’s and the seller’s conditional value distribu-

tions, (FV( · | y), FC( · | z)), can be developed given they are point identified. A strategy could rely

on the previous identification strategy. Specifically, for example, when k = 1, first let Γ̂1(p, z) be the

estimate of Γ1(p, z) in (3.3), where h1(p | y, z) is replaced by its nonparametric estimate ĥ1(p | y, z).

Then define the estimates for ψ(p) and m(p) by

Γ̂1(p, z∗) = Γ̂1(ψ̂(p), z∗∗) and m̂(p) =
ĥ1(ψ̂(p), z∗∗)

ĥ1(p, z∗)
ψ̂′(p).

Finally, an estimator for λ( · , z∗) is obtained by solving the counterpart of equation (3.9), that is,

m̂′(p)
[
λ̂(p, z∗)

]2
+
[
(p− ψ̂(p))m̂(p)

]′
λ̂(p, z∗) + (p− ψ̂(p))m̂(p)m̂′(p) = 0.

However, because it requires estimating the functions Γ1( · , · ), ψ( · ) and m( · ) as intermediate steps

which involves operations such as taking limits or derivatives, this strategy could be computation-

ally demanding and complicated in implementation.

Another possible strategy replies on the feature that when k = 1 or 0, the conditional price

density h1( · | y, z) or h0( · | y, z) can be explicitly expressed as a function of the traders’ conditional

value distributions. This feature allows the conditional value distributions to be estimated by

directly looking for FV( · | y) and FC( · | z) in the parameter space to match the observed and the

predicted distributions of the transaction price. Consider a simple example of n double auctions

with k = 1, for each of which the observables consist of the transaction price Pi and the associated

covariates (Yi, Zi). First, estimate c by the lowest observed price as ĉ = mini Pi and assume the

rest unknown parameters θ = (v, FV( · | · ), FC( · | · )) ∈ Θ = V ×FV ×FC, where V is a compact

subset of R+ and FV , FC are the respective sets of the buyer’s and the seller’s conditional value

distributions that satisfy all the relevant assumptions on traders’ value distributions. Next, take

Θn = V ×FV,n ×FC,n as the sieve approximation of Θ such that the sieve preserves the shape and

smoothness restrictions on the unknown functions, and then an estimator for θ is given by the

minimizer of a criterion function Qn, i.e. θ̂ = arg minθn=(vn,FVn,FCn)∈Θn
Qn(θn). A candidate for the

criterion function is the negative likelihood function which, by (3.1), takes the form of

Qn(θn) = −
1
n

n

∑
i=1

H1n(Pi, Yi, Zi)∫ b1n(Zi)
ĉ H1n(u, Yi, Zi)du

,

where

H1n(p, y, z) = F′Vn

(
p +

FCn(p | z)
F′Cn(p | z)

∣∣∣∣ y
)

FCn(p | z)
{

2−
FCn(p | z)F′′Cn(p | z)

[F′Cn(p | z)]2

}
and b1n(Zi) is determined by b1n(Zi) + FCn(b1n(Zi) | Zi)/F′Cn(b1n(Zi) | Zi) = vn. Alternatively,
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inspired by Bierens and Song (2012, 2014), the criterion function can be chosen as

Qn(θn) =
∫
[−t,t]dy+dz+1

∣∣∣∣∣ 1n n

∑
i=1

exp [i · (Pi, Yi, Zi)τ]−
1
n

n

∑
i=1

exp
[
i · (P̃i(θn), Yi, Zi)τ

]∣∣∣∣∣
2

dτ

with some t > 0, where τ ∈ Rdy+dz+1, i =
√
−1, and P̃i(θn) is the simulated transaction price

in a double auction with k = 1 for the traders’ value distributions specified by FVn( · |Yi) and

FCn( · | Zi).
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A Supplementary Results and Proofs

A.1 Results for the Case with k = 0

The identification results based on the price distributions of k-double auctions with k = 0 can

be established in a similar way by using symmetric assumptions. Here I will list the relevant

assumptions and provide the statements of the conclusions without proof.

When k = 0, I assume that the buyer’s conditional value distribution FV( · | y) satisfies:

Assumption I. For any y ∈ Y , δ(v, y) = 0, and δ( · , y) is continuously differentiable with −∞ <

∂1δ(v, z) < 0 for all v ∈ [c, v].

Just a reminder, here δ( · , y) = [1− FV( · | y)]/ fV( · | y) and ∂1δ(v, y) denotes the partial derivative

of δ( · , · ) with respect to the first argument evaluated at (v, y). I also assumed that the seller’s

conditional value distribution FC( · | z) satisfies:

Assumption J. There exist z∗ 6= z∗∗ in Z such that fC( · | z∗)/ fC( · | z∗∗) is continuously differentiable

with positive derivative on [c, v].

Assumption I and Assumption J are parallel to Assumptions E and F, respectively.

With these assumptions, I can show the following parallel results for the k = 0 case.

Lemma 4. Under Assumptions A to D and Assumption I, for any y ∈ Y and any z ∈ Z ,

(i) b0(y, z) = v, and h0(v | y, z) = 0;

(ii) s0(y, z) = s0(y) which solves s0(y)− δ(s0(y), y) = c.

By defining

Γ0(p, y) ≡ lim
q→v

[
h0(p | y, z∗)
h0(q | y, z∗)

/
h0(p | y, z∗∗)
h0(q | y, z∗∗)

]
for s0(y) < p < v and Γ0(s0(y), y) ≡ limp→s0(y) Γ0(p, y), Γ0(v, y) ≡ limp→v Γ0(p, y), it follows that
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Lemma 5. Under Assumptions A to D and Assumptions I and J,

(i) Γ0( · , y) is continuously differentiable with positive derivative on [s0(y), v] for any y ∈ Y ;

(ii) Γ0(v, y∗) = Γ0(v, y∗∗) = 1 and Γ0(s0(y∗), y∗) = Γ0(s0(y∗∗), y∗∗) for any y∗, y∗∗ ∈ Y .

For y∗ 6= y∗∗ and for p ∈ [s0(y∗), v], define ϕ(p) be such that

Γ0(p, y∗) = Γ0(ϕ(p), y∗∗),

and let

r(p) ≡ h0(ϕ(p) | y∗∗, z∗)
h0(p | y∗, z∗)

ϕ′(p),

then

Theorem 4. Under Assumptions A to D and Assumptions I and J, h0( · | y, z) can be rationalized by

sealed-bid k-double auction with k = 0 for some FV( · | y), y ∈ {y∗, y∗∗} and FC( · | z), z ∈ {z∗, z∗∗} if and

only if FV( · | y∗) and FV( · | y∗∗) satisfy

p− δ(p, y∗) = ϕ(p)− δ(ϕ(p), y∗∗),

and

1− FV(ϕ(p) | y∗∗)
1− FV(p | y∗) =

a0(y∗, z∗)
a0(y∗∗, z∗)

· r(p),

for all p ∈ [s0(y∗), v].

For the point identification result, assume additionally:

Assumption K. Let η(p, y) = p− δ(p, y). FV( · | y∗) and FV( · | y∗∗) satisfy ∂1η−1(c, y∗) < ∂1η−1(c, y∗∗)

for any c ∈ [c, v), where η−1( · , y) is the inverse function of η( · , y).

Theorem 5. Under Assumptions A to D and Assumptions I to K, 1− FV( · | y∗) is identified on [s0(y∗), v]

and 1− FV( · | y∗) is identified on [s0(y∗∗), v].

Similarly, it suffices to use conditions weaker than Assumption K: (i) η−1(c, y∗) > η−1(c, y∗∗) for all

c ∈ [c, v), and (ii) [1− FV(η
−1( · , y∗∗) | y∗∗)]/[1− FV(η

−1( · , y∗) | y∗)] is strictly decreasing on [c, v).

When the covariate Y is continuous random variable and the support Y = [y, y] ⊂ R, I assume

in addition that:

Assumption L. When Y is continuous, δ(v, y) is continuously differentiable in y.

Then,

Lemma 6. Under Assumptions A to D, I, J, and L, Γ0(p, y) is continuously differentiable in y.

19



Therefore, similarly define `0(p, y) = ∂1Γ0(p, y)/∂2Γ0(p, y) for y ∈ Y and p ∈ [s0(y), v], and the

following theorem parallel to Theorem 3 holds.

Theorem 6. Under Assumptions A to D, I, J, and L, if δ( · , y∗) is known for some y∗ ∈ Y , then δ( · , · ) is

identified on the set {(p, y) : y ∈ Y , p ∈ [s0(y), v]} through the following partial differential equation

`0(p, y) · ∂1δ(p, y)− ∂2δ(p, y) = `0(p, y).

A.2 Proof of Lemma 1

By Assumption D, the lowest possible private values of the buyer and the seller are c. When k = 1,

because the equilibrium bidding strategy for the seller is submitting his true valuation, the seller

with the lowest private value will bid c. Also, the buyer with the lowest private value will also bid

c because c + λ(c, z) = c + 0 = c. Therefore, the lower endpoint of the price support is s1(y, z) = c,

which is independent from Y and Z; and it follows from (3.1) directly that h1(c | y, z) = 0 because

FC(c | z) = 0.

For conclusion (ii), because the seller’s value distribution does not depend on covariate Y by

condition (i) of Assumption D, the buyer’s equilibrium bidding strategy, whose inverse function is

given by b + λ(b, z), does not depend on Y, either. Also, because the highest possible private value

of the buyer, v, does not depend on Y or Z, the buyer’s highest bid b1(y, z) will just depend on

covariate Z. Since the buyer’s inverse bidding function is strictly increasing as λ( · , z) is assumed

to be strictly increasing, the buyer’s highest bid, which is also the upper endpoint of the price

support, is the unique solution to equation b1(z) + λ(b1(z), z) = v.

A.3 Proof of Lemma 2

For (i), given the differentiability of fV( · | y∗)/ fV( · | y∗∗) and λ( · , z) assumed in Assumptions E

and F, differentiating Γ1(p, z) as (3.4) with respect to p yields

∂1Γ1(p, z) =
fV(c | y∗∗)
fV(c | y∗)

· d
du

[
fV(u | y∗)
fV(u | y∗∗)

]∣∣∣∣
u=p+λ(p,z)

· [1 + ∂1λ(p, z)] .

Since d
du [ fV(u | y∗)/ fV(u | y∗∗)] is continuous and both p+ λ(p, z) and 1+ ∂1λ(p, z) are continuous

in p, ∂1Γ1(p, z) is continuous in p and therefore Γ1( · , z) is continuously differentiable. In the mean

time, ∂1Γ1(p, z) < 0 because d
du [ fV(u | y∗)/ fV(u | y∗∗)] < 0 by Assumption F and 1 + ∂1λ(p, z) > 1

by Assumption E.

To show (ii), first note that by Assumption E, λ(c, z∗) = λ(c, z∗∗) = 0, so by (3.4),

Γ1(c, z∗) =
fV(c + λ(c, z∗) | y∗)
fV(c + λ(c, z∗) | y∗∗) ·

fV(c | y∗∗)
fV(c | y∗)

=
fV(c | y∗)
fV(c | y∗∗)

· fV(c | y∗∗)
fV(c | y∗)

= 1
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and

Γ1(c, z∗∗) =
fV(c + λ(c, z∗∗) | y∗)
fV(c + λ(c, z∗∗) | y∗∗) ·

fV(c | y∗∗)
fV(c | y∗)

=
fV(c | y∗)
fV(c | y∗∗)

· fV(c | y∗∗)
fV(c | y∗)

= 1.

Next, it follows from conclusion (ii) of Lemma 1 that b1(z∗) and b1(z∗∗) satisfy that b1(z∗) +

λ(b1(z∗), z∗) = b1(z∗∗) + λ(b1(z∗∗), z∗∗) = v. Therefore,

Γ1(b1(z∗), z∗) =
fV(b1(z∗) + λ(b1(z∗), z∗) | y∗)
fV(b1(z∗) + λ(b1(z∗), z∗) | y∗∗)

· fV(c | y∗∗)
fV(c | y∗)

=
fV(v | y∗)
fV(v | y∗∗)

· fV(c | y∗∗)
fV(c | y∗)

,

Γ1(b1(z∗∗), z∗∗) =
fV(b1(z∗∗) + λ(b1(z∗∗), z∗∗) | y∗)
fV(b1(z∗∗) + λ(b1(z∗∗), z∗∗) | y∗∗)

· fV(c | y∗∗)
fV(c | y∗)

=
fV(v | y∗)
fV(v | y∗∗)

· fV(c | y∗∗)
fV(c | y∗)

,

and then Γ1(b1(z∗), z∗) = Γ1(b1(z∗∗), z∗∗).

A.4 Proof of Theorem 1

First, for the “only if” part, I shall show that under Assumptions A to F, for any buyer’s conditional

value distributions FV( · | y), y ∈ {y∗, y∗∗} and seller’s conditional value distributions FC( · | z),
z ∈ {z∗, z∗∗} that can rationalize the price distributions with densities h1( · | y, z), y ∈ {y∗, y∗∗},
z ∈ {z∗, z∗∗}, the seller’s conditional value distributions FC( · | z∗) and FC( · | z∗∗) must satisfy (3.6)

and (3.7). This is straightforward based on the derivation of (3.6) and (3.7).

Since FV( · | y), y ∈ {y∗, y∗∗} and FC( · | z), z ∈ {z∗, z∗∗} can rationalize the given price distribu-

tion, then by (3.1) it must be true that for y ∈ {y∗, y∗∗} and z ∈ {z∗, z∗∗}, the price density can be

written as

h1(p | y, z) = a1(y, z)FC(p | z) fV(p + λ(p, z) | y) [1 + ∂1λ(p, z)] , p ∈ [c, b1(z)],

for some a1(y, z) > 0. Then by the definition of Γ1( · , z) (i.e. (3.3)), it follows that for z ∈ {z∗, z∗∗},

Γ1(p, z) = lim
q→c

[
h1(p | y∗, z)
h1(q | y∗, z)

/
h1(p | y∗∗, z)
h1(q | y∗∗, z)

]
= lim

q→c

[
fV(p + λ(p, z) | y∗)
fV(p + λ(p, z) | y∗∗) ·

fV(q + λ(q, z) | y∗∗)
fV(q + λ(q, z) | y∗)

]
=

fV(p + λ(p, z) | y∗)
fV(p + λ(p, z) | y∗∗) ·

fV(c | y∗∗)
fV(c | y∗)

,

which is equation (3.4). The last equality is due to λ(c, z) = 0 and the continuity of λ( · , z) by

Assumption E as well as the continuity of fV( · | y∗∗)/ fV( · | y∗) by Assumption F. Because the

function ψ( · ) is defined as such that Γ1(p, z∗) = Γ1(ψ(p), z∗∗) for p ∈ [c, b1(z∗)], and because

fV( · | y∗)/ fV( · | y∗∗) is strictly monotone by Assumption F, FC( · | z∗) and FC( · | z∗∗), or λ( · | z∗)
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and λ( · | z∗∗), must satisfy

fV(p + λ(p, z∗) | y∗)
fV(p + λ(p, z∗) | y∗∗) =

fV(ψ(p) + λ(ψ(p), z∗∗) | y∗)
fV(ψ(p) + λ(ψ(p), z∗∗) | y∗∗) ⇒ p + λ(p, z∗) = ψ(p) + λ(ψ(p), z∗∗),

which is equation (3.6).

Given FC( · | z∗) and FC( · | z∗∗) satisfy (3.6), differentiating both sides of (3.6) yields

1 + ∂1λ(p, z∗) = ψ′(p) + ∂1λ(ψ(p), z∗∗) · ψ′(p) = ψ′(p) [1 + ∂1λ(ψ(p), z∗∗)] .

Since for y ∈ {y∗, y∗∗} and p ∈ [c, b1(z∗)],

h1(p | y, z∗) = a1(y, z∗)FC(p | z∗) fV(p + λ(p, z∗) | y) [1 + ∂1λ(p, z∗)] ,

h1(ψ(p) | y, z∗∗) = a1(y, z∗∗)FC(ψ(p) | z∗∗) fV(ψ(p) + λ(ψ(p), z∗∗) | y) [1 + ∂1λ(ψ(p), z∗∗)] ,

so taking the ratio of these two and using fV(p + λ(p, z∗) | y) = fV(ψ(p) + λ(ψ(p), z∗∗) | y) implied

by (3.6), I have that FC( · | z∗) and FC( · | z∗∗) should also satisfy

h1(p | y, z∗)
h1(ψ(p) | y, z∗∗)

=
a1(y, z∗)
a1(y, z∗∗)

· FC(p | z∗)
FC(ψ(p) | z∗∗)ψ′(p),

which can be written into the form of (3.7).

Now I shall show the “if” part, i.e. under Assumptions A to D, for any seller’s conditional

value distributions FC( · | z∗) and FC( · | z∗∗) that satisfy Assumption E, (3.6) and (3.7), there exist

buyer’s conditional value distributions FV( · | y∗) and FV( · | y∗∗) satisfying Assumption F such

that h1( · | y, z), y ∈ {y∗, y∗∗}, z ∈ {z∗, z∗∗} are the price densities generated from the regular

equilibrium of a k-double auction with k = 1.

I will start off by claiming that given a price density h1( · | y, z) and a seller’s conditional value

distribution FC( · | z) that satisfies Assumption E, a distribution given by (3.8) with v = b1(z) +

λ(b1(z), z) is the conditional value distribution for the buyer with which the seller’s conditional

value distribution rationalizes the price distribution. To show this, first, because b solves b +

λ(b, z) = v, it follows that

db
dv

+ ∂1λ(b, z) · db
dv

= 1 ⇒ db
dv

=
1

1 + ∂1λ(b, z)
.

Note that
{∫ b1(z)

c [h1(u | y, z)/FC(u | z)]du
}−1

in (3.8) is a constant only depending on y and z so

denote it by σ1(y, z). Therefore, differentiating (3.8) with respect to v gives the corresponding
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density of F̃V( · | y, z) as

f̃V(v | y, z) = σ1(y, z) · h1(b | y, z)
FC(b | z)

· db
dv

= σ1(y, z) · h1(b | y, z)
FC(b | z)

· 1
1 + ∂1λ(b, z)

. (A.1)

Since v = b + λ(b, z), so (A.1) can be written as

f̃V(b + λ(b, z) | y, z) = σ1(y, z) · h1(b | y, z)
FC(b | z)

· 1
1 + ∂1λ(b, z)

(A.2)

for b ∈ [c, b1(z)]. Then by (3.1), the density of the price distribution generated by FC( · | z) and

F̃V( · | y, z) is

h̃1(p | y, z) = ã1(y, z)FC(p | z) f̃V(p + λ(p, z) | y, z) [1 + ∂1λ(p, z)] ,

where ã1(y, z) is the normalization constant. It immediately follows from (A.2) that

h̃1(p | y, z) = ã1(y, z)σ1(y, z)h1(p | y, z).

Since both h̃1( · | y, z) and h1( · | y, z) are density functions on support [c, b1(z)],

1 =
∫ b1(z)

c
h̃1(p | y, z)dp = ã1(y, z)σ1(y, z)

∫ b1(z)

c
h1(p | y, z)dp = ã1(y, z)σ1(y, z)

and hence h̃1(p | y, z) = h1(p | y, z) for all p ∈ [c, b1(z)].

Let F̃V( · | y, z), y ∈ {y∗, y∗∗}, z ∈ {z∗, z∗∗} be the respective buyer’s conditional value distri-

butions induced by the corresponding h1( · | y, z) and the seller’s conditional value distributions

FC( · | z∗), FC( · | z∗∗) that satisfy (3.6) and (3.7). Next I will show that for y ∈ {y∗, y∗∗}, F̃V( · | y, z∗)

and F̃V( · | y, z∗∗) are in fact the same distribution.

First, by condition (ii) of Lemma 2, I have ψ(c) = c and ψ(b1(z∗)) = b1(z∗∗), then (3.6) implies

b1(z∗) + λ(b1(z∗), z∗) = ψ(b1(z∗)) + λ(ψ(b1(z∗)), z∗∗) = b1(z∗∗) + λ(b1(z∗∗), z∗∗).

Since the induce buyer’s conditional value distribution has support [c, v] with v = b1(z) +

λ(b1(z), z), this means that both FV( · | y, z∗) and FV( · | y, z∗∗) have the same support. Second,

for any p ∈ [c, b1(z∗), let v = p + λ(p, z∗). Given FC( · | z∗) and FC( · | z∗∗) satisfy (3.6), v =

ψ(p) + λ(ψ(p), z∗∗), too. So by taking b = p and b = ψ(p) in (A.2) for z = z∗ and z = z∗∗

respectively, I get

f̃V(v | y, z∗) = σ1(y, z∗) · h1(p | y, z∗)
FC(p | z∗) ·

1
1 + ∂1λ(p, z∗)

,
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f̃V(v | y, z∗∗) = σ1(y, z∗∗) · h1(ψ(p) | y, z∗∗)
FC(ψ(p) | z∗∗) ·

1
1 + ∂1λ(ψ(p), z∗∗)

.

Then by (3.7),

f̃V(v | y, z∗∗) = σ1(y, z∗∗)
a1(y, z∗∗)
a1(y, z∗)

· h1(p | y, z∗)
FC(p | z∗) ·

1
[1 + ∂1λ(ψ(p), z∗∗)]ψ′(p)

= σ1(y, z∗∗)
a1(y, z∗∗)
a1(y, z∗)

[
1 + ∂1λ(p, z∗)

σ1(y, z∗)
· f̃V(v | y, z∗)

]
1

[1 + ∂1λ(ψ(p), z∗∗)]ψ′(p)

=
σ1(y, z∗∗)a1(y, z∗∗)
σ1(y, z∗)a1(y, z∗)

· 1 + ∂1λ(p, z∗)
[1 + ∂1λ(ψ(p), z∗∗)]ψ′(p)

· f̃V(v | y, z∗).

Equation (3.6) implies 1 + ∂1λ(p, z∗) = ψ′(p) + ∂1λ(ψ(p), z∗∗)ψ′(p), so 1+∂1λ(p,z∗)
[1+∂1λ(ψ(p),z∗∗)]ψ′(p) = 1.

Consequently, f̃V(v | y, z∗) = f̃V(v | y, z∗∗) because

σ1(y, z∗∗)a1(y, z∗∗)
σ1(y, z∗)a1(y, z∗)

=
σ1(y, z∗∗)a1(y, z∗∗)
σ1(y, z∗)a1(y, z∗)

∫ v

c
f̃V(v | y, z∗)dv =

∫ v

c
f̃V(v | y, z∗∗)dv = 1.

Thus, the induced F̃V( · | y, z), y ∈ {y∗, y∗∗} do not depend on covariate Z, so F̃V( · | y, z) = F̃V( · | y)
and they are valid conditional value distributions for the buyer that satisfies Assumption D.

As a final point, it is remained to show that F̃V( · | y∗) and F̃V( · | y∗∗) satisfy Assumption F.

Since F̃V( · | y∗) and F̃V( · | y∗∗) can rationalize the observed price distributions, straightforwardly,

for either z = z∗ or z = z∗∗,

Γ1(p, z) =
f̃V(p + λ(p, z) | y∗)
f̃V(p + λ(p, z) | y∗∗)

· f̃V(c | y∗∗)
f̃V(c | y∗)

, p ∈ [c, b1(z)].

Given that λ( · , z) is continuously differentiable and strictly increasing by Assumption E, the likeli-

hood ratio f̃V( · | y∗)/ f̃V( · | y∗∗) is continuously differentiable and strictly decreasing as Γ1( · , z) is

continuously differentiable and strictly decreasing due to Lemma 2.

A.5 Proof of Theorem 2

First, I shall show that under Assumptions A to F, it is implied by Assumption G that ψ(p) < p

and m′(p) < 0 for all p ∈ (c, b1(z∗)]. Because ξ( · , z) is the buyer’s equilibrium inverse bid-

ding function when Z = z, let v ∈ (c, v] be such that v = ξ(p, z∗) = p + λ(p, z∗) then v =

ψ(p) + λ(ψ(p), z∗∗) = ξ(ψ(p), z∗∗) by (3.6), which means ψ(p) = ξ−1(v, z∗∗) while p = ξ−1(v, z∗).

Since differentiating (3.6) with respect to p yields 1 + ∂1λ(p, z∗) = ψ′(p) [1 + ∂1λ(ψ(p), z∗∗)], so

∂1ξ−1(v, z∗) > ∂1ξ−1(v, z∗∗) implies

ψ′(p) =
1 + ∂1λ(p, z∗)

1 + ∂1λ(ψ(p), z∗∗)
=

∂1ξ(p, z∗)
∂1ξ(ψ(p), z∗∗)

=
∂1ξ(ξ−1(v, z∗), z∗)

∂1ξ(ξ−1(v, z∗∗), z∗∗)
=

∂1ξ−1(v, z∗∗)
∂1ξ−1(v, z∗)

< 1.
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Since ψ(c) = c, it is straightforward that

ψ(p) = ψ(c) +
∫ p

c
ψ′(u)du < c +

∫ p

c
1 du = p.

To see m′(p) < 0, note that by (3.7), m(p) = a1(y∗,z∗∗)
a1(y∗,z∗)

· FC(ψ(p) | z∗∗)
FC(p | z∗) and then

m′(p) =
a1(y∗, z∗∗)
a1(y∗, z∗)

[
fC(ψ(p) | z∗∗)ψ′(p)

FC(p | z∗) − FC(ψ(p) | z∗∗) fC(p | z∗)
FC(p | z∗)2

]
=

a1(y∗, z∗∗)
a1(y∗, z∗)

· FC(ψ(p) | z∗∗)
FC(p | z∗)

[
fC(ψ(p) | z∗∗)
FC(ψ(p) | z∗∗)ψ′(p)− fC(p | z∗)

FC(p | z∗)

]
= m(p)

[
ψ′(p)

λ(ψ(p), z∗∗)
− 1

λ(p, z∗)

]
.

Because ψ(p) < p, (3.6) implies λ(p, z∗) < λ(ψ(p), z∗∗); then it follows from ψ′(p) < 1 that

λ(p, z∗)ψ′(p) < λ(p, z∗) < λ(ψ(p), z∗∗)⇒ ψ′(p)
λ(ψ(p), z∗∗)

− 1
λ(p, z∗)

< 0⇒ m′(p) < 0

given m(p) > 0.

Because for any p ∈ (c, b1(z∗)], m′(p) < 0 and ∆1(p) > 0, (3.9) has two real solutions, namely

λ(1)(p, z∗) and λ(2)(p, z∗).

Since m(p) > 0, so by Vieta’s formulas, when ψ(p) < p and m′(p) < 0, the product of these

two solutions

λ(1)(p, z∗) · λ(2)(p, z∗) =
(p− ψ(p))m(p)

m′(p)
< 0.

It implies that either one of the two solutions is positive and the other is negative. Because it

is assumed that λ(p, z∗) > 0 for all p ∈ (c, b1(z∗)], the negative solution should be ruled out.

Therefore, λ( · , z∗) is identified as the positive solution, i.e.

λ(p, z∗) =
−[(p− ψ(p))m(p)]′ + sgn(p− ψ(p))

√
{[(p− ψ(p))m(p)]′}2 − 4(p− ψ(p))m(p)m′(p)

2m′(p)
,

where sgn( · ) is the sign function.

Then by (3.6), λ( · , z∗∗) will be identified as

λ(p, z∗∗) = ψ−1(p) + λ(ψ−1(p), z∗)− p, p ∈ [c, b1(z∗∗)],

where ψ−1( · ) is the inverse function of ψ( · ). It follows from the definition of λ( · , · ) that the
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corresponding seller’s conditional value distributions are identified as

FC(c | z)
FC(b1(z) | z)

= exp

(
−
∫ b1(z)

c

1
λ(u, z)

du

)
, c ∈ [c, b1(z)],

for z ∈ {z∗, z∗∗}.

A.6 Proof of Theorem 3

By applying the method of characteristics (see Rhee, Aris, and Amundson, 1986 or Vvedensky,

1993), the first-order linear differential equation in the form of (3.12) can be solved by solving its

system of characteristic differential equations

dz
1

=
dp

−`1(p, z)
=

dλ

`1(p, z)
(A.3)

with the boundary condition λ( · , z∗) = ξ( · ) where z∗ is arbitrary point in Z and ξ( · ) is a continu-

ously differentiable function satisfying ξ(c) = 0 and ξ ′( · ) > 0.

Rewrite the boundary condition curve into its parametric form:

z(u) = z∗, p(u) = u, λ(u) = ξ(u), u ∈ [c, b1(z∗)].

Because

1 ·
[
−p′(u)

]
− [−`1(p(u), z(u))] · z′(u) = −1 6= 0

for all t ∈ [c, b1(z∗)], the boundary condition prescribe above is non-characteristic; that is, geo-

metrically, the projection of the boundary condition curve onto the (p, z)-plane does not coincide

with the projections of any integral curves that satisfy (A.3). Therefore, the solution to the partial

differential equation (3.12) subject to the boundary condition λ( · , z∗) = ξ( · ) is unique and the

desired result follows.

Remark. As a matter of fact, given the partial differential equation under review is in fact strictly

linear, it can be shown that how the solution is uniquely obtained. First, it follows from (A.3) that

dp
dz

= −`1(p, z).

Since `1( · , · ) is continuous by the fact that Γ1(p, z) is continuously differentiable in both p and z,

this ordinary differential equation can be solved and denote the solution by p = ρ(z, A) where

A is a constant of integration which is determined by boundary condition ρ(z∗, A) = p∗ where
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p∗ ∈ [c, b2(z∗)]. Next, it also follows from (A.3) that

dλ

dz
= `1(p, z).

Then for any value of A, since λ(ρ(z∗, A), z∗) = λ(p∗, z∗) = ξ(p∗) by the boundary condition

specified, then taking the integral of the above ordinary differential equation along the curve

{(p, z) : z ∈ Z , p = ρ(z, A)}, I can get for any z ∈ Z ,

λ(ρ(z, A), z) = ξ(ρ(z∗, A)) +
∫ z

z∗
`1(ρ(t, A), t)dt,

which is the desired solution of the partial differential equation (3.12).

A.7 Example that violates Assumption G but has λ( · , z∗) identified

It is implied by Assumption G that p > ψ(p) and m′(p) < 0 for all p ∈ (c, b1(z∗)]. Here is an

example in which m(p) is not monotone and p− ψ(p) changes sign as p varies within [c, b1(z∗)] so

that Assumption G is not satisfied. However, λ(p, z∗) is still point identified in this example.

Suppose the private value support is [c, v] = [0, 1]. The (true) seller’s conditional value distribu-

tions are specified as such that

λ(p, z∗) =
FC(p | z∗)
fC(p | z∗) = p, 0 6 p 6

1
2

and

λ(p, z∗∗) =
FC(p | z∗∗)
fC(p | z∗∗) =

2
√

9p + 1− 2
3

− p, 0 6 p 6
7
12

.

Let the (true) buyer’s conditional value densities be fV(v | y∗) = 1 and fV(v | y∗∗) = 2v. Given such

specification, the price densities h1( · | y∗, z∗) and h1( · | y∗∗, z∗) will have support [c, b1(z∗)] =
[
0, 1

2

]
;

the price densities h1( · | y∗, z∗∗) and h1( · | y∗∗, z∗∗) will have support [c, b1(z∗∗)] =
[
0, 7

12

]
.

It can be verified that the price distributions imply

ψ(p) = p2 +
2p
3

, 0 6 p 6
1
2

,

which features ψ(p) < p if 0 < p < 1
3 and ψ(p) > p if 1

3 < p 6 1
2 . Meanwhile, it can also be verified

that with some A > 0,

m(p) = A · (4− 3p)−
5
2 p−

1
2 , m′(p) = A · (9p− 2)(4− 3p)−

7
2 p−

3
2 , 0 6 p 6

1
2

.

So m(p) is strictly decreasing when 0 6 p 6 2
9 and strictly increasing when 2

9 6 p 6 1
2 . These mean
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that the conditions in Theorem 2 are not satisfied, except

∆1(p) = A2 ·
(
9p2 − 42p + 10

)2

9p(4− 3p)7 > 0

for all 0 6 p 6 1
2 .

However, note that for p ∈
[
0, 1

2

]
\
{ 2

9

}
, m′(p) 6= 0, so by the quadratic formula, the two real

solutions are

λ(1)(p, z∗) =
− [(p− ψ(p))m(p)]′ +

√
∆1(p)

2m′(p)
=


9p3 − 15p2 + 4p

27p− 6
if p <

7−
√

39
3

,

p otherwise;

λ(2)(p, z∗) =
− [(p− ψ(p))m(p)]′ +

√
∆1(p)

2m′(p)
=


p if p <

7−
√

39
3

,

9p3 − 15p2 + 4p
27p− 6

otherwise.

When p = 2
9 , (3.9) has only one real solution

− (p− ψ(p))m(p)
[(p− ψ(p))m(p)]′

∣∣∣∣
p= 2

9

=
2
9

.

The definition of solution λ(2)(p, z∗) above can be modified to accommodate this case.

However, there is only one solution of (3.9) satisfying Assumption E, i.e. λ(p, z∗) is continuously

differentiable and strictly increasing with λ(c, z∗) = 0 (see Figure 1):

λ(p, z∗) = 1

(
0 6 p <

7−
√

39
3

)
· λ(2)(p, z∗) + 1

(
7−
√

39
3

6 p 6
1
2

)
· λ(1)(p, z∗) = p.

Therefore, the seller’s conditional value distribution FC( · | z∗) on interval [c, b1(z∗)] =
[
0, 1

2

]
is still

identified, though conditions (ii) and (iii) required by Theorem 2 are not fulfilled.
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Figure 1: Examine the solutions of equation (3.9)
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