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Abstract

This paper studies the nonparametric identification and estimation of double auctions with one

buyer and one seller. This model assumes that both bidders submit their own sealed bids, and the

transaction price is determined by a weighted average between the submitted bids when the buyer’s

offer is higher than the seller’s ask. It captures the bargaining process between two parties. Working

within this double auction model, we first establish the nonparametric identification of both the

buyer’s and the seller’s private value distributions in two bid data scenarios; from the case of all bids

being available, to the case of only transacted bids being available. Specifically, both private value

distributions are point identified when all of the bids are observed. They are, however, partially

identified when only the transacted bids are available. A sharp characterization of the identified set

is provided in the latter case. Second, we estimate double auctions with bargaining using a two-step

procedure that incorporates both boundary and interior bias correction. We then show that our value

density estimators achieve the optimal uniform convergence rate of first-price auctions. Monte Carlo

experiments show that, in finite samples, our estimation procedure works well on the whole support

and significantly reduces the large bias of an estimator without bias correction in both boundary

and interior regions.

KEYWORDS: Double auctions, bargaining, nonparametric identification, kernel estimation, boundary

correction.

JEL CLASSIFICATION: C14, C57, C78, D44, D82

1 Introduction

Bilateral bargaining is one of the most important forms of trade. Despite there has been a large

literature of bargaining in theory and in laboratory experiments over the past sixty years, we have
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seen a burst of empirical investigations of bargaining only in the past decade. The latter is mainly

due to the increasing availability of bargaining data to the academic community, see, e.g., the online

bargaining interaction data from the eBay’s best offer platform (Backus, Blake, Larsen, and Tadelis,

2020, Backus, Blake, Pettus, and Tadelis, 2020), the data of wholesale used-auto auctions (Larsen and

Zhang, 2018, Larsen, 2021), and the data of union-management negotiations (Treble, 1987, 1990).

A bargaining framework with two-sided incomplete information allows for inefficient outcome

which occurs in real-world trade but is excluded by a framework with complete information. As

one influential candidate of the former, the double auction with bargaining (or k double auction)

considers linear strategies for both buyer and seller. The linearity of strategies has been confirmed

by experimental studies (see, e.g., Radner and Schotter, 1989, Schotter, 1990). This paper nonpara-

metrically identifies and estimates the double auction model with bargaining. Our framework can be

used to recover the buyer’s and seller’s updated value distributions based on the last round of bids,

since the prior rounds of bids are usually used to reveal limited information about own reservation

values (Parco, Rapoport, Seale, Stein, and Zwick, 2004). For instance, our method can be employed

to estimate the buyer’s and the seller’s (most updated) value distributions by using the last round

of offers from the bargaining data of eBay’s best offer platform (or wholesale used-auto auctions, or

union-management negotiations).

This paper contributes to the literature of non-cooperative bargaining games with incomplete

information. On the theoretical side, such games have been extensively studied by, e.g., Chatterjee and

Samuelson (1983), Myerson and Satterthwaite (1983), Rubinstein (1985), Grossman and Perry (1986),

Leininger, Linhart, and Radner (1989), Satterthwaite and Williams (1989, 1993), Brams and Kilgour

(1996), Ausubel, Cramton, and Deneckere (2002), Kadan (2007), and Loertscher and Marx (2019),

among others. In addition, there is also a large experimental literature which examines the theoretical

properties of bargaining with incomplete information; see, e.g., Radner and Schotter (1989), Rapoport

and Fuller (1995), Daniel, Seale, and Rapoport (1998), Rapoport, Daniel, and Seale (1998), Seale,

Daniel, and Rapoport (2001), Parco (2002), and Parco and Rapoport (2004), among others. Empirically,

there is a fast growing literature to investigate the role of asymmetric information in bargaining.1

Examples with reduced-form approach include Merlo and Ortalo-Magne (2004), Scott Morton, Silva-

Risso, and Zettelmeyer (2011), Backus, Blake, and Tadelis (2019), Backus, Blake, Larsen, and Tadelis

(2020), Backus, Blake, Pettus, and Tadelis (2020), Bagwell, Staiger, and Yurukoglu (2020), and Grennan

and Swanson (2020). Another line of empirical research conducts structural analysis of incomplete

information bargaining in, e.g., wholesale used-auto market (Genesove, 1991, Larsen and Zhang,

2018, Larsen, 2021), and the market for local autorickshaw transportation (Keniston, 2011). Our paper

belongs to the second research line (of structural approach) and provides an empirical methodology

to use the data on offers and asks at the last round of the bargaining process to estimate the updated

valuation distributions of both participating parties. Our method can be applied to the experimental

data to test the k double auction theory in laboratory environment in the same flavor as Bajari and

Hortacsu (2005). It can also be applied to the field data to quantify both the ex ante and ex post

inefficiency introduced by private information (see Satterthwaite and Williams, 1989).

Our paper is also related to the literature which examines nonparametric identification and

1 There is also a growing literature on structural analysis of bargaining with complete information. Examples include Merlo
(1997), Diermeier, Eraslan, and Merlo (2003), Eraslan (2008), Merlo and Tang (2012, 2019), and Simcoe (2012).

2



estimation of one-sided auctions. This work was pioneered by Guerre, Perrigne, and Vuong (2000) for

the identification and estimation of first-price auctions, and has been followed by many other papers.

For comprehensive surveys, see Athey and Haile (2007), Hendricks and Porter (2007), Hickman,

Hubbard, and Sağlam (2012), Gentry, Hubbard, Nekipelov, and Paarsch (2018), Perrigne and Vuong

(2019), and Hortaçsu and Perrigne (2021). In identification part, we generalize the Guerre, Perrigne,

and Vuong (2000)’s nonparametric identification strategy to the double auction setup. The model

primitives are shown to be partially identified when only transacted bids are available, but to be point

identified when the failed bids are also available. Our identification results are hence similar to Gentry

and Li (2014), who obtained constructive bounds on model fundamentals which collapse to point

identification when available entry variation is continuous in auctions with selective entry. There are

other papers obtaining partial identification in the context of one-side auctions, see, e.g., Haile and

Tamer (2003), McAdams (2008), Tang (2011), Aradillas-López, Gandhi, and Quint (2013), Komarova

(2013), and Chen, Gentry, Li, and Lu (2020). Compared to this research line, however, we consider

identification in a different auction setting (namely, double auctions with bargaining) which introduces

not only asymmetric information but also asymmetric bidding strategies.2 In estimation part, our

paper is closely related to Hickman and Hubbard (2014) who adapted the bias correction method of

Karunamuni and Zhang (2008), Zhang, Karunamuni, and Jones (1999) to correct the boundary bias

of the two-step value density estimator, which was first proposed by Guerre, Perrigne, and Vuong

(2000), of (one-sided) first-price auctions. We generalize their bias correction ideas to correct both

boundary and interior biases of bid and value densities which exist in the equilibrium outcome of our

double auction model. Furthermore, we establish the uniform convergence rates of our generalized

(bias-corrected) density estimators on the whole support for bid densities and on a larger support for

value densities.

In view of the preceding results, we consider nonparametric identification and estimation of double

auction with bargaining. First, in addition to characterizing all the restrictions on the observables (i.e.

bid distributions) imposed by the theoretical double auction model with bargaining, we establish

point identification of model primitives (i.e. value distributions) from the observables in the case

where all bids are observed. In the case when only transacted bids are observed,3 we provide a sharp

identified set of bidders’ value distributions (in Corollary 2).4 We show that, in the latter case, the

conditional distributions of bidders’ valuations given positive (conditional) probability of trade are

point identified. Second, we propose the (boundary and interior) bias corrected two-step estimators of

the buyer’s and the seller’s value densities. In a double auction setting, we show that our estimators

achieve the optimal convergence rate. Third, using Monte Carlo experiments, we show that it is

important to implement the bias correction (especially bias correction in the interior of the support) in

the two-step estimation of value densities. In particular, we show that, without bias correction, the

statistical inference is almost infeasible, not only on the boundaries, but also in the interior.

2 The asymmetry of bidding strategies arises from the fact that the buyer and the seller have different roles in our double
auction model.

3 In a transaction, a buyer’s bid (or offer) must be no lower than seller’s bid (or ask).
4 This result parallels the typical finding that limitations on data observation (such as interval valued data) induce partial

identification in nonparametric mean regression and semi-parametric binary regression; see, e.g., Manski and Tamer (2002),
Magnac and Maurin (2008), Wan and Xu (2015), among others.
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The rest of this paper is organized as follows. In Section 2, we present the sealed-bid double auction

model with bargaining and characterize its equilibrium. Section 3 then studies the identification of

private value distributions in two different scenarios. In the first scenario, all of the submitted bids

can be observed. In contrast, only those bids with successful transactions can be observed in the

second scenario. In Section 4, we estimate both the bid and the value densities with bias correction

and establish their uniform convergence rates. Section 5 uses Monte Carlo experiments to illustrate

the finite sample performance of our estimators. We briefly discuss the extension of our approach to

the cases with auction-specific heterogeneity, unobserved heterogeneity, higher order bias reduction,

and estimation using transacted bids in Section 6. Section 7 concludes the paper. Appendix A collects

the proofs of our main results in the text, while Appendix B presents a supplementary material (the

results of which are shown in Appendix C).

2 The k-Double Auction Model

We consider a k-double auction where a single and indivisible object is auctioned between a buyer and

a seller. Each of them simultaneously submits a bid. If the buyer’s offer is no lower than the seller’s

ask, a transaction is made at a price of their weighted average, i.e. at a price p(B, S) = kB + (1− k)S

where k is a constant in [0, 1], B is the buyer’s offer, and S is the seller’s ask. Otherwise, there is no

transaction. The buyer has a value V for the auctioned object, and the seller has a reservation value C.

Consequently, the buyer’s payoff is V − p(B, S) and the seller’s payoff is p(B, S)− C if a trade occurs;

their payoffs are both zero otherwise. Each of them does not know her opponent’s valuation but only

knows that it is drawn from a distribution Fj (j = C, V). The distributions FV , FC, and the payment

rule are all common knowledge between buyer and seller.

We impose the following assumption on the private values and their distributions.

Assumption A. (i) V and C are independent. (ii) FV is absolutely continuous on the support [v, v] ⊂ R+

with density fV . FC is absolutely continuous on the support [c, c] ⊂ R+ with density fC.

Under Assumption A, the seller’s private value is independent of the buyer’s, and the value dis-

tributions are absolutely continuous on bounded supports. Such an assumption has been adopted

by most theoretical papers on double auctions with bargaining; see, e.g., Chatterjee and Samuelson

(1983), Myerson and Satterthwaite (1983), Leininger, Linhart, and Radner (1989) and Satterthwaite

and Williams (1989).

We also impose the following restriction on the supports of FV and FC.

Assumption B. The supports of FV and FC satisfy c < v.

This assumption requires that the buyer’s maximum value must be higher than the seller’s minimum

cost. It rules out the trivial case of v 6 c in which there is zero probability of trade in any equilibrium.

The special cases of such a support condition have been commonly adopted by the theoretical double

auction literature; e.g., Myerson and Satterthwaite (1983), Leininger, Linhart, and Radner (1989), and

Satterthwaite and Williams (1989).

Denote by βB : [v, v]→ R+ and βS : [c, c]→ R+ the buyer’s and the seller’s strategies, respectively.

Let b = βB(v) denote the bid of a buyer with realized private value v under strategy βB. Then, the
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expected profit of the buyer given the seller’s strategy is

πB(b, v) =


∫ b

s
[v− p(b, s)]dGS(s) =

∫ b

s
[v− kb− (1− k)s]dGS(s), if b > s,

0, if b < s,
(2.1)

where GS is the distribution function of the seller’s bid and s is the lower endpoint of its support.

Similarly, let s = βS(c) denote the ask of a seller with realized private reservation value c under

strategy βS. Then, the expected profit of the seller given the buyer’s strategy is

πS(s, c) =


∫ b

s
[p(b, s)− c]dGB(b) =

∫ b

s
[kb + (1− k)s− c]dGB(b), if s 6 b,

0, if s > b,
(2.2)

where GB is the distribution function of the buyer’s bid and b is the upper endpoint of its support.

We adopt the Bayesian Nash equilibrium (BNE) concept throughout.

Definition 1 (Best response). A buyer’s strategy βB is a best response to βS if for any buyer’s strategy

β̃B : [v, v] → R+ and each value v ∈ [v, v], πB(βB(v), v) > πB(β̃B(v), v). The seller’s best response is

defined in an analogous way.

Definition 2 (Bayesian Nash equilibrium). A strategy profile (βB, βS) constitutes a Bayesian Nash equilib-

rium if βB and βS are best responses to each other.

We exclude some irregular equilibria and focus on those which are well-behaved as described in

Chatterjee and Samuelson (1983). Precisely, we impose the following restrictions on the equilibrium:

Assumption C (Regular equilibrium). The equilibrium strategy profile (βB, βS) satisfies

A1. βB and βS are continuous on their whole domains;

A2. βB is continuously differentiable with positive derivative on [s, v] if s < v; βS is continuously differentiable

with positive derivative on [c, b] if c < b;

A3. βB(v) = v if v 6 s; βS(c) = c if c > b.

We say that an equilibrium satisfying Assumption C is regular. Assumption C basically restricts us

to strictly monotone and (piecewise) differentiable strategy equilibria which are quite intuitive in

bilateral k-double auctions. As demonstrated by Satterthwaite and Williams (1989, Theorem 3.2),

there exist a continuum of regular equilibria when k ∈ (0, 1) and [v, v] = [c, c] = [0, 1]. Following

most of the empirical game literature, we adopt the following equilibrium selection mechanism when

multiple regular equilibria exist:

Assumption D. In all observed auctions, the buyers and the sellers play the same regular equilibrium.

Notice that Assumption D is not restrictive when there is a unique regular equilibrium.

The following lemma characterizes some basic properties of the equilibrium strategy profile.

Lemma 1. For any equilibrium (βB, βS),
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(i) when v > s, βB(v) 6 v with strict inequality if k > 0;

(ii) when c < b, βS(c) > c with strict inequality if k < 1.

Proof. See Appendix A.1.

Note that the conclusion of Lemma 1 holds for any BNE (i.e., not only for regular BNE). With condition

A3 of Assumption C, it implies that, in regular equilibrium, the buyer will never bid higher than her

private value and the seller will never bid lower than her private value. Under the special case of

k = 1/2, Leininger, Linhart, and Radner (1989) constructed a lemma similar to our Lemma 1.

3 Nonparametric Identification

In this section, we study the nonparametric identification of private value distributions in two cases

which differ in the degree of available data. In the first case, researchers can observe both the transacted

bids and the bids where no transaction takes place.5 In the second case, researchers can only observe

the transacted bids.

In both cases, we assume that the pricing weight k in the payment rule is known to researchers.

Such an assumption is not restrictive because the value of k can be recovered by using some additional

information about the transaction price, given that the transacted bids are observed. For example,

when the mean transaction price is observed, the parameter k is determined by k = E(P)−E(S∗)
E(B∗)−E(S∗)

since E(P) = kE(B∗) + (1− k)E(S∗) where (B∗, S∗) are the transacted bids. Alternatively, when we

observe some quantile of the transaction price, k can be identified by exploiting the property that the

price distribution function is continuous and monotone in k (see Appendix B.1 for detailed discussion).

In addition, as noted by Section 6.1, the pricing weight k can depend on the heterogeneity when the

latter is considered in our framework.

3.1 Case One: All Submitted Bids Being Observed

We first consider the nonparametric identification of the k-double auction model with bargaining when

researchers observe the distribution of all submitted bids (including the bids that are not transacted).

As shown in Chatterjee and Samuelson (1983) and Satterthwaite and Williams (1989), a regular

equilibrium (βB, βS) in a k-double auction with bargaining can be characterized by the following two

differential equations for v > s and c 6 b,

β−1
B (βS(c)) = βS(c) + kβ′S(c)

FC(c)
fC(c)

, (3.1)

β−1
S (βB(v)) = βB(v)− (1− k)β′B(v)

1− FV(v)
fV(v)

, (3.2)

where β−1
B ( · ) and β−1

S ( · ) are the inverse bidding strategies.6 For buyer with value v > s, the

equilibrium bid under strategy βB is b = βB(v). Let c̃ = β−1
S (b). Since strategy βS is strictly increasing,

5 We say that a pair of bids (B, S) is transacted if B > S.
6 When c = c, (3.1) implies that β−1

B (s) = s. Similarly, (3.2) implies that β−1
S (b) = b when v = v.
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GS(b) = FC(β−1
S (b)) = FC(c̃). Noting that

gS(b) =
fC(β−1

S (b))

β′S(β−1
S (b))

=
fC(c̃)
β′S(c̃)

, v = β−1
B (b) = β−1

B (βS(c̃)),

by (3.1), we have

v = b + k
GS(b)
gS(b)

. (3.3)

Similarly, for seller with value c 6 b, we have the following condition by (3.2)

c = s− (1− k)
1− GB(s)

gB(s)
. (3.4)

Note that (3.3) and (3.4) only hold for v > s and c 6 b. In such a case, we have Pr(βB(V) > βS(C) |V =

v) > 0 when v > s and Pr(βB(V) > βS(C) |C = c) > 0 when c < b. In other words, given the

private values, both the buyer and the seller expect that trade occurs with positive probability.7 For

the buyer with value v < s or the seller with value c > b, there will be no transaction under strategy

profile (βB, βS). We define functions ξ(b, GS) and η(s, GB) as the right-hand sides of (3.3) and (3.4),

respectively. That is,

ξ(b, GS) ≡ b + k
GS(b)
gS(b)

, s 6 b 6 s, (3.5)

η(s, GB) ≡ s− (1− k)
1− GB(s)

gB(s)
, b 6 s 6 b. (3.6)

By definition, it is straightforward that ξ(s, GS) = s and η(b, GB) = b.

We define PA as the collection of absolutely continuous probability distributions with support A .

Let G denote the joint distribution of (B, S). Here, we restrict ourselves to the regular equilibrium

strategies which are strictly increasing and (piecewise) differentiable.

Theorem 1. Under Assumptions C and D, if G ∈ PD is the joint distribution of regular equilibrium bids

(B, S) in a sealed-bid k-double auction with some (FV , FC) satisfying Assumptions A and B, then

C1. The support D = [b, b]× [s, s] with b 6 s < b 6 s;

C2. G(b, s) = GB(b) · GS(s) and GB ∈P[b,b], GS ∈P[s,s];

C3. The function ξ( · , GS) defined in (3.5) is strictly increasing on [s, b] and its inverse is differentiable on

[ξ(s, GS), ξ(b, GS)];

C4. The function η( · , GB) defined in (3.6) is strictly increasing on [s, b] and its inverse is differentiable on

[η(s, GB), η(b, GB)];

C5. For any b 6 b′ 6 s and for any b 6 b such that ξ(b, GS) > b′,

[ξ(b, GS)− b′]GS(b′)− [ξ(b, GS)− b]GS(b) + (1− k)
∫ b′

b
GS(s)ds 6 0; (3.7)

7 The transaction occurs when βB(V) > βS(C).
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C6. For any b 6 s′ 6 s and for any s > s such that η(s, GB) 6 s′,

[s′ − η(s, GB)][1− GB(s′)]− [s− η(s, GB)][1− GB(s)] + k
∫ s

s′
[1− GB(b)]db 6 0. (3.8)

Proof. See Appendix A.2.

Theorem 1 shows that the theoretical model of a k-double auction with bargaining does impose

some restrictions on the joint distribution of observed bids.8 Together with Theorem 2 which will be

shown immediately, these restrictions can be used to establish a formal test of the theory of k-double

auction with bargaining. Specifically, condition C1 of Theorem 1 shows that the buyer’s minimum

(or maximum) bid is not higher than the seller’s minimum (or maximum) bid, and the intersection

between the buyer’s and the seller’s bid supports has a non-empty interior. The latter is mainly

due to Assumption B about the supports of private value distributions, which implies that there is

always positive probability of trade in any regular equilibrium. Condition C2 shows that the buyer’s

bid is independent of seller’s. This independence result is intuitive given that the buyer’s value

is independent of the seller’s. Conditions C3 and C4 say that the functions ξ( · , GS) and η( · , GB),

which can be regarded as the inverse bidding strategies, are strictly increasing and differentiable

on the interval where there is a positive probability of trade. The strict monotonicity property of

inverse bidding strategies comes from the fact that the equilibrium strategies are strictly increasing.

Conditions C5 and C6 restrict the bid distributions to have small enough probability in the cases

where buyer offers less than minimum ask s or seller asks more than maximum offer b.9

The following theorem establishes our first identification result.

Theorem 2. Under Assumptions A to D, FV and FC are point identified from any given G ∈PD satisfying

C1–C6.

Proof. See Appendix A.3.

Theorem 2 shows that the private value distributions FV and FC are point identified from the joint

distribution of observed bids. In addition, the inverse bidding strategies ξ( · , GS) and η( · , GB) only

rely on the knowledge of distribution G. We can hence avoid solving the linked differential equations

(3.1) and (3.2) in our identification.

Conditions C5 and C6 are less intuitive, and could be difficult to check in practice. It will be

helpful to provide their sufficient conditions which are easy to verify. Our next lemma provides such

sufficient conditions.

Lemma 2. Under Assumptions A to D, conditions C3–C6 are implied by

C7. The function ξ( · , GS) defined in (3.5) is strictly increasing on [s, s] and its inverse is differentiable on

[ξ(s, GS), ξ(b, GS)];

8 Liu, Vuong, and Xu (2017) characterized similar restrictions imposed by the monotone bayesian Nash equilibrium of
theoretical model in the context of binary games with correlated types.

9 Otherwise, the buyer with very high private value or the seller with very low reservation value will have incentive to
deviate from the given equilibrium strategy.
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C8. The function η( · , GB) defined in (3.6) is strictly increasing on [b, b] and its inverse is differentiable on

[η(s, GB), η(b, GB)].

Proof. See Appendix A.4.

3.2 Case Two: Only Transacted Bids Being Observed

We now discuss the nonparametric identification of the k-double auction model when researchers only

observe the transacted bids. This scenario is motivated by the fact that bidders can deviate from truth

telling outside the trading region. Thus the unsuccessful bids may not contain much information.

Our identification strategy consists of two key steps. Let G2 denote the joint distribution of

the transacted bids.10 In the first step, we identify both marginal bid distributions GB and GS on

[s, b], from the distribution G2 of the transacted bids. For any s 6 b, GS(s) = Pr(S 6 s|B = b)

by the independence between B and S. Pr(S 6 s|B = b) is identified from the distribution G2 of

the transacted bids, since the transaction is always successful in this case by S 6 s 6 b = B. The

seller’s marginal bid distribution GS(·) and its density gs(·) are hence identified on [s, b]. Similarly,

the buyer’s marginal bid distribution GB(·) and its density gB(·) are also identified on [s, b] by

1− GB(b) = Pr(B > b|S = s) for any b > s. In the second step, we recover the corresponding private

values for the buyer and the seller by the inverse bidding strategies of (3.5) and (3.6) for the bids on

[s, b].

The above discussion leads to both the rationalization and identification results in case two. We

first present the rationalization result as follows.

Corollary 1. Under Assumptions C and D: If G2 ∈ PD ′ is the joint distribution of transacted bids under

some regular equilibrium in a sealed-bid k-double auction with (FV , FC) satisfying Assumptions A and B, then

D1. The support D ′ =
{
(b, s) | s 6 s 6 b 6 b

}
with s < b;

D2. For any s 6 s′ 6 s 6 b 6 b′ 6 b, the density of G2 satisfies g2(b, s) · g2(b′, s′) = g2(b, s′) · g2(b′, s);

D3. The function ξ( · , GS) defined in (3.5) is strictly increasing on [s, b] and its inverse is differentiable on

[ξ(s, GS), ξ(b, GS)];

D4. The function η( · , GB) defined in (3.6) is strictly increasing on [s, b] and its inverse is differentiable on

[η(s, GB), η(b, GB)].

Proof. See Appendix A.5.

Corollary 1 shows that the conclusion of Theorem 1 carries over to the transacted bids area, although

some (non-transacted) bids cannot be observed now. Specifically, condition D1 says that the support

of the distribution of observed (transacted) bids is a triangle in which the buyer’s bid is no less than

the seller’s. Condition D2 means that the multiplication of conditional densities evaluated at (b, s)

and (b′, s′) is the same as the multiplication of conditional densities evaluated at (b, s′) and (b′, s)

as long as these four points are located in the transacted bids area. Such a condition arises mainly

due to the independence of private values. Conditions D3 and D4 state that both the buyer’s and

10 Precisely, G2(b, s) = Pr(B 6 b, S 6 s|s 6 S 6 B 6 b).
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the seller’s inverse bidding strategies are strictly increasing and differentiable on the interval of all

possible transacted bids values, namely [s, b].

We then present the identification result in the following corollary.

Corollary 2. Suppose that Assumptions A to D hold. For any joint distribution of transacted bids G2 ∈PD ′

satisfying D1–D4, the sharp identified set of value distributions contains all FV and FC that satisfy

E1. c 6 s < b 6 v;

E2. For all (v, c) ∈ [s, ξ(b, GS)]× [η(s, GB), b],11

Pr (V 6 v |V > s) =
GB(ξ

−1(v, GS))− GB(s)
1− GB(s)

, Pr
(

C 6 c |C 6 b
)
=

GS(η
−1(c, GB))

GS(b)
(3.9)

where Pr (V 6 v |V > s) =
FV(v)− FV(s)

1− FV(s)
, and Pr

(
C 6 c |C 6 b

)
=

FC(c)
FC(b)

;

E3. For any b′ > b and for any b 6 b such that ξ(b, GS) > b′,

[ξ(b, GS)− b′]FC(b′)− [ξ(b, GS)− b]FC(η(b, GB))

+ (1− k)

[∫ b

b
FC(η(s, GB))ds +

∫ b′

b
FC(s)ds

]
6 0; (3.10)

For any s′ 6 s and for any s > s such that η(s, GB) 6 s′,

[s′ − η(s, GB)][1− FV(s)]− [s− η(s, GB)][1− FV(ξ(s, GS))]

+ k
{∫ s

s′
[1− FV(b)]db +

∫ s

s
[1− FV(ξ(b, GS))]db

}
6 0. (3.11)

Proof. See Appendix A.6.

Corollary 2 gives the identified set of the private value distributions when only the transacted bids

are observed. This identified set is actually sharp in the sense that we cannot improve it from the

information of observables. Although the private value distributions FV and FC are not point identified

in this case, the buyer’s and the seller’s conditional private value distributions are point identified by

(3.9) on their value intervals where there is a positive probability of trade.

4 Estimation

Based on the identification strategy, we provide a nonparametric estimation procedure as well as its

asymptotic properties when all bids can be observed by the researchers, i.e. in the case one. We will

briefly discuss the estimation of case two with transacted bids in Section 6.4. To present the basic

ideas, we further assume that all of the observed k-double auctions are homogeneous. Section 6.1

extends our estimation method to allow for auction-specific heterogeneity.

11 Notice that we have ξ(s, GS) = s and η(b, GB) = b by the definitions of functions ξ and η.
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Our estimation procedure extends the two-step estimator proposed by Guerre, Perrigne, and Vuong

(2000) for the estimation of sealed-bid first-price auctions: In the first step, a sample of buyers’ and

sellers’ “pseudo private values” is constructed by (3.3) and (3.4), where GS and GB are estimated by

their empirical distribution functions, and gS and gB are estimated by their kernel density estimators

with boundary and interior bias correction. In the second step, this sample of pseudo private values is

used to nonparametrically estimate the densities of buyers’ and sellers’ private values with boundary

and interior bias correction. Notice that, due to the regular equilibrium assumption, a bidder’s private

value is equal to her bid (in the first step) if the bidder is a buyer offering less than s or if the bidder is

a seller asking more than b.

It is worth pointing out that both boundary and interior bias correction is implemented in all

kernel density estimators of our two-step procedure. This is motivated by the fact that the boundary

and interior biases are worse in double auctions than in first-price auctions. Specifically, as pointed out

by Guerre, Perrigne, and Vuong (2000), the estimators of bid density and private value density suffer

from boundary bias (on the two endpoints of each support) in the two-step estimation of first-price

auctions, since these two densities are bounded away from zero on finite supports. This issue carries

over to the double auction setup, and is made worse by the discontinuity of bid densities in the

interior of their supports. The interior discontinuity of bid densities occurs because that the bidding

strategies have interior kinks in regular equilibrium. Consequently, the two-step estimator of private

value density with boundary and interior bias correction will have a better performance than the one

without any bias correction (e.g. the one with sample trimming instead) in finite samples. This is

similar to Hickman and Hubbard (2014) who corrected the bias on the boundaries (not in the interior)

of the bid and value densities, and is confirmed by our Monte Carlo experiments in Section 5 as well.

We adapt the boundary correction technique proposed by Zhang, Karunamuni, and Jones (1999)

and Karunamuni and Zhang (2008) to our double auction setup, and follow them to focus on the case

of continuously differentiable private value density (and hence twice continuously differentiable bid

density by Lemma 3). The case of smoother private value densities is discussed in Section 6.3.

4.1 Definition of the Estimator

To clarify our idea, we consider n homogeneous k-double auctions. In each auction i = 1, 2, . . . , n,

there is one buyer with private value Vi and one seller with private value Ci. We observe a sample

that consists of all of the buyers’ bids {B1, B2, . . . , Bn} and all of sellers’ bids {S1, S2, . . . , Sn}. Let b̂

and b̂ (ŝ and ŝ) be the minimum and maximum of the buyers’ (sellers’) n observed bids.

Our estimation proceeds as follows: In the first step, we use the observed sample of all bids to

estimate the distribution and density functions of the buyers’ and sellers’ bids by their empirical dis-

tribution functions and (boundary and interior) bias corrected kernel density estimators, respectively,

i.e. by

ĜB(b) =
1
n

n

∑
i=1

1(Bi 6 b), ĜS(s) =
1
n

n

∑
i=1

1(Si 6 s),

and kernel density estimators ĝB and ĝS which are estimated on [ŝ, b̂] as shown in (B.5) of Appendix B.2.

Specifically, the estimator of the buyers’ bid density ĝB uses kernel function KB, primary bandwidth

hB, secondary bandwidth h′B and coefficient A = AB, while the estimator of the sellers’ bid density ĝS

11



uses KS, hS, h′S and A = AS. We then define the buyer’s pseudo private value V̂i corresponding to Bi

and the seller’s pseudo private value Ĉi corresponding to Si, respectively, as

V̂i =


Bi + k

ĜS(Bi)

ĝS(Bi)
if Bi > ŝ,

Bi otherwise,

Ĉi =


Si − (1− k)

1− ĜB(Si)

ĝB(Si)
if Si 6 b̂,

Si otherwise,

(4.1)

where ĜB( · ), ĜS( · ), ĝB( · ), and ĝS( · ) are the empirical distribution functions and bias-corrected

kernel density estimators defined earlier. Note that we have Vi = Bi (resp. Ci = Si) when Bi < s (resp.

Si > b) in regular equilibrium.

In the second step, we use the pseudo private value samples, {V̂1, . . . , V̂n} and {Ĉ1, . . . , Ĉn}, to

estimate the buyers’ and sellers’ respective value densities. Specifically, the estimator of the buyers’

value density f̂V is obtained by applying the bias correction approach in (B.5) to the sample of the

buyers’ pseudo private values on [v̂, v̂], where v̂ and v̂ are respectively the minimum and maximum

of the buyers’ pseudo private values, with kernel function KV , primary bandwidth hV , secondary

bandwidth h′V , and coefficient A = AV . Similarly, we get the estimator of the sellers’ value density f̂C

on interval [ĉ, ĉ] by the sample of the sellers’ pseudo private values with kernel function KC, primary

bandwidth hC, secondary bandwidth h′C, and coefficient A = AC.

4.2 Asymptotic Properties

The next assumption concerns the generating process of buyers’ and sellers’ private values (Vi, Ci), i =

1, . . . , n.

Assumption E. Vi, i = 1, 2, . . . , n, are independently and identically distributed as FV with density fV ; Ci,

i = 1, 2, . . . , n, are independently and identically distributed as FC with density fC.

This assumes that the bidders’ private values are independent across auctions. In addition, we impose

a smoothness condition on the latent value distributions as follows:

Assumption F. FV and FC are twice continuously differentiable on [v, v] and [c, c], respectively. In addition,

fV(v) > αV > 0 for all v ∈ [v, v]; fC(c) > αC > 0 for all c ∈ [c, c].

Assumption F requires that, on compact supports, the latent value distributions are twice continuously

differentiable and their density functions are bounded away from zero. As shown in the following

lemma, this assumption implies that the generated equilibrium bid distributions will also satisfy a

similar smoothness condition.

Lemma 3. Given Assumption F, the distributions of regular equilibrium bids GB and GS satisfy:

(i) for any b ∈ [b, b] and any s ∈ [s, s], gB(b) > αB > 0, gS(s) > αS > 0;

(ii) GB and GS are twice continuously differentiable on [s, b];

(iii) gB and gS are also twice continuously differentiable on [s, b].

Proof. See Appendix A.7.
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The striking feature of Lemma 3 is part (iii). It shows that the bid densities are smoother than their

corresponding latent value densities. A similar result is obtained by Guerre, Perrigne, and Vuong

(2000) in first-price auctions.

We turn to the choice of kernels in the following assumption.

Assumption G. KB, KS, KV and KC are symmetric second order kernels with support [−1, 1] and have

continuous bounded second order derivatives.

We then give conditions on the choice of bandwidths and other tuning parameters.

Assumption H. The bandwidths hB, hS, hV , hC are of the form:

hB = λB
(

log n/n
)1/5, hS = λS

(
log n/n

)1/5, hV = λV
(

log n/n
)1/5, hC = λC

(
log n/n

)1/5,

where the λ’s are positive constants. The parameters AB, AS, AV , AC > 1/3 and the secondary bandwidths

are of the form: h′B = τBn−1/5, h′S = τSn−1/5, h′V = τVn−1/5, h′C = τCn−1/5, where the τ’s are positive

constants.

To implement the bias correction technique, we adopt Assumption H to choose all primary bandwidths

of order (log n/n)1/5 and the secondary bandwidths h′B, h′S, h′V , and h′C of order n−1/5.12

Our main estimation result establishes the uniform consistency (with rates of convergence) of

the two-step estimators of value densities. It is built on the following lemma which shows the

uniform consistency (with rates of convergence) of (i) the first-step nonparametric estimators of the

bid densities and (ii) the pseudo private values V̂i and Ĉi.

Lemma 4. Suppose that Assumptions E to H hold, then

(i) supb∈[b,b] |ĝB(b)− gB(b)| = Op
(
(log n/n)2/5), sups∈[s,s] |ĝS(s)− gS(s)| = Op

(
(log n/n)2/5).

(ii) supi |V̂i −Vi| = Op
(
(log n/n)2/5), supi |Ĉi − Ci| = Op

(
(log n/n)2/5).

Proof. See Appendix A.8.

Lemma 4 first shows that, after bias correction, the kernel density estimators of the bid distributions

uniformly converge in probability to the true densities at a rate of (log n/n)2/5 on their entire supports.

It also shows that all pseudo private values converge uniformly in probability to the true private

values at the same rate. Without boundary and interior bias correction, the uniform convergence of

bid density estimators and pseudo private values holds only on an interior closed subset (excluding

boundaries) of bid support.

We now give our main result of the estimation section.

Theorem 3. Under Assumptions E to H, for any (fixed) closed inner subsets CV of [v, v] and CC of [c, c], 13

sup
v∈CV

| f̂V(v)− fV(v)| = Op
(
(log n/n)1/5), sup

c∈CC

| f̂C(c)− fC(c)| = Op
(
(log n/n)1/5).

12 Such choices of secondary bandwidths minimize the mean squared errors of estimating d’s in the transform functions for
bias correction.

13 We call closed set A ′ ⊆ A a closed inner subset of A if A ′ is also a subset of the interior of A .
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Proof. See Appendix A.9.

Theorem 3 shows that our (bias corrected) two-step estimators of private value densities converge

uniformly to their true densities at a rate of (log n/n)1/5 on any closed inner subset of value support.

This convergence rate is optimal in first-price auctions (Guerre, Perrigne, and Vuong, 2000). Without

bias correction, the usual two-step estimators of private value densities have the same convergence

rate as (log n/n)1/5 only on any close inner subset excluding s (or b). Consequently, we expect that,

in comparison to the two-step estimator without bias correction, the one with bias correction will

have better finite sample performance close to s for the buyers’ value density estimator and close to b

for the sellers’. This is confirmed by our Monte Carlo experiments in the next section. Nevertheless,

Theorem 3 does not say anything about the uniform convergence rate on the entire support. The main

difficulty comes from the low accuracy in estimation of the boundary points v, v, c and c, since they

are estimated from the pseudo private values which converge to their true values at a nonparametric

rate.

With smoother value densities, the uniform convergence rate of the two-step value density esti-

mators with and without bias correction can be improved. Such an extension is briefly discussed in

Section 6.3 for bias corrected estimators, and in Appendix B.3 of supplementary material for estimators

without bias correction.

5 Monte Carlo Experiments

To study the finite sample performance of our two-step estimation procedure, we conduct Monte

Carlo experiments. We consider two cases of buyers’ and sellers’ true value distributions and pricing

weights. In the first case, both buyers’ and sellers’ private values are uniformly distributed on [0, 1].

The bidding strategies of the buyer and the seller are given by

βB(v) =


v

1 + k
+

k(1− k)
2(1 + k)

, if
1− k

2
6 v 6 1,

v, if 0 6 v <
1− k

2
;

βS(c) =


c

2− k
+

1− k
2

, if 0 6 c 6
2− k

2
,

c, if
2− k

2
< c 6 1,

where k is the pricing weight. Moreover, we set the pricing weight k = 1/2 so that the buyer and the

seller have equal bargaining power in determining the transaction price. This case has been frequently

studied in the theoretical literature (e.g., Chatterjee and Samuelson, 1983). In the second case, we

allow asymmetry between buyers’ and sellers’ value distributions, and asymmetry between their

pricing weights. Specifically, we set the pricing weight to k = 3/4, and the true densities of buyers’

and sellers’ private value distributions to be:

fV(v) =
(8v + 12)

√
16v2 − 128v + 553− 32v2 + 80v− 105

(7
√

553− 31)
√

16v2 − 128v + 553
,

fC(c) =
1

511 +
√

73− 1076e−3/4

[
4− 8c

9
+

9 + 16c√
81 + 16c2

− 2
9

√
81 + 16c2 + 1(c > 3)

(c− 3)3

3
e

3−c
4

]
,
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with identical supports, [v, v] = [c, c] = [0, 6].14 In this case, it can be verified that the buyer’s and the

seller’s bidding strategies given by15

βB(v) =


v, if 0 6 v < 1,

4v + 28−
√

16v2 − 128v + 553
11

, if 1 6 v 6 6;

βS(c) =


4c +

√
16c2 + 81
9

, if 0 6 c 6 3,

c, if 3 < c 6 6,

form a regular equilibrium. Figure 1 plots the true value densities, the equilibrium bidding strategies,

and the induced bid densities in the second case.

Our Monte Carlo experiment consists of 5000 replications for each case. In each replication, we

first randomly generate n buyers’ and n sellers’ private values from their true value distributions. We

then compute the corresponding bids according to the true bidding strategies. Next, we apply our

bias-corrected two-step estimation procedure to the generated sample of bids for each replication. In

the first step, we estimate the distribution functions and densities of buyers’ and sellers’ bids using

the empirical distribution functions and bias-corrected kernel density estimators, respectively. We

then use (4.1) to obtain the buyers’ and the sellers’ pseudo private values. In the second step, we

use the sample of buyers’ and sellers’ pseudo private values to estimate buyers’ and sellers’ value

densities by their bias-corrected kernel density estimators.

To satisfy Assumption G on the kernels,16 we choose the triweight kernel for all of KB( · ), KS( · ),
KV( · ), and KC( · ), i.e. KB(u) = KS(u) = KV(u) = KC(u) = (35/32)(1 − u2)3 · 1(−1 6 u 6 1).

We then choose the primary bandwidths hB, hS, hV and hC according to the rule of optimal global

bandwidth (see Silverman, 1986) as

hj = min

n−
1
5 σ̂j

 8
√

π
∫ 1
−1 K2

j (u)du

3
(∫ 1
−1 u2Kj(u)du

)2


1
5

,
r̂j

2

 , j = B, S, V, C,

where n is the sample size of the observed bids, σ̂j is the estimated standard deviation of observed

bids for j = B, S or pseudo private values for j = V, C, Kj( · ) is the kernel function, and r̂j is the

length of the interval on which the corresponding bid or value density is estimated. In addition, the

parameters of bias correction are chosen as follows: all of the coefficients AB, AS, AV and AC are set at

14 As a matter of fact, we also add some curvature to the true value densities fV( · ) and fC( · ) in this case.
15 It can also be verified that the corresponding bid densities are

gB(b) =


fV(b), if 0 6 b < 1,

121b
28
√

553− 124
, if 1 6 b 6 3,

0, otherwise;

gS(s) =


36− 9s

2044 + 4
√

73− 4304e−3/4
, if 1 6 s 6 3,

fC(s), if 3 < s 6 6,

0, otherwise.

16 Notice that, in both cases, the private value densities fV( · ) and fC( · ) are continuously twice differentiable on the entire
support.
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(a) Buyers’ and sellers’ private value densities
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Figure 1: True private value densities, equilibrium bidding strategies and bid densities in the second

experiment
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0.65; each of the secondary bandwidths is equal to its counterpart among the primary bandwidths,17

i.e. h′j = hj for j = B, S, V, C.

Our Monte Carlo results for the first case are summarized in Figure 2. It shows the two-step

estimates of value densities with and without bias correction under the sample sizes of n = 200

and n = 1000, when both buyers’ and sellers’ private values are uniformly distributed on [0, 1]. The

true value densities are displayed in solid lines. For each value of v ∈ [0, 1] (or c ∈ [0, 1]), we plot

the mean of the estimates with a dashed line, and the 5th and 95th percentiles with dotted lines.

The latter gives the (pointwise) 90% confidence interval for fV(v) (or fC(c)). Figure 2 shows that

our bias-corrected two-step density estimates behave well. First, the true curves fall within their

corresponding confidence bands. Second, the mean of the estimates for each density closely matches

the true curve. Third, as sample size increases, both the bias and variance of the estimates decrease.

Figure 2 also shows that bias correction plays an important role in estimating the value densities in

double auctions with bargaining. As shown by Figures 2c, 2d, 2g and 2h, the standard kernel density

estimator (without bias correction) has large bias not only at the boundaries but also in an interior area.

When the sample size n increases, this bias will not diminish, although the variance will shrink. The

appearance of bias in the interior shows that bias correction is necessary to estimate value densities in

double auctions with bargaining.

Figure 3 reports the simulation results of the second case under the sample sizes of n = 200 and

n = 1000. Similarly, the true densities, means, and 5th/95th percentiles are respectively displayed in

solid lines, dashed lines, and dotted lines. It shows that, with some curvature in the value densities

and asymmetry between buyers and sellers, the conclusions in Figure 2 still hold; that is, (i) the

bias-corrected two-step density estimates perform well, and (ii) bias correction plays an important

role for estimating the value densities in our double auction model.

6 Extensions

6.1 Auction-Specific Heterogeneity

We now briefly discuss how to generalize our identification and estimation approach to allow for

auction-specific heterogeneity.18 Let X ∈ Rd be a random vector that characterizes the heterogeneity

of auctions. For auctions with X = x, let FV|X( · |x) and FC|X( · |x) be the buyers’ and sellers’ private

value distributions, and GB|X( · |x) and GS|X( · |x) be their respective bid distribution functions with

densities gB|X( · |x) and gS|X( · |x). Let all of our previous assumptions hold for every x in the support

of X wherever it applies. The buyer’s and the seller’s inverse bidding functions in an auction with

17 We tried other values of coefficients Aj and secondary bandwidths h′j, j = B, S, V, C, in our experiments, but found that, as
long as Assumption H holds, the estimates of both buyers’ and sellers’ value densities are almost the same for different values
of Aj and h′j.

18 The existence of auction-specific heterogeneity allows for correlation between the buyer’s and the seller’s private values.
Such correlation, however, exists only through the auction-specific heterogeneity.
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Figure 2: True and estimated densities of private values. Vi ∼ U[0, 1], Ci ∼ U[0, 1].
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Figure 3: True and estimated densities of private values under asymmetry.
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characteristic X = x are, respectively,

v=


b+k(x) ·

GS|X(b | x)
gS|X(b | x)

, if b > s(x),

b, otherwise,
c=


s−(1− k(x)) ·

1− GB|X(s | x)
gB|X(s | x)

, if s 6 b(x),

s, otherwise,
(6.1)

where s(x) is the lower bound of the support of GS|X( · | x), b(x) is the upper bound of the support of

GB|X( · | x). Note that the weight k(x) depends on the realization of heterogeneity X in this case.

We can then generalize most of our identification and estimation results to auctions with hetero-

geneity. Specifically, our identification and model restrictions results (Theorems 1 and 2, Lemma 2,

and Corollaries 1 and 2) still hold as long as the value and bid distributions are simply replaced by the

corresponding conditional distributions given X and all relevant conditions hold for every realization

of X.

For estimation, our two-step procedure can be generalized to incorporate auction-specific het-

erogeneity. In the first step, for each auction, we use (6.1) to recover both the buyers’ and the

sellers’ pseudo private values. Notice that, in (6.1), the estimation of conditional bid densities

gS|X and gB|X needs to first recover the joint densities gSX and gBX of the bids and the covari-

ates (as well as the marginal density fX of the covariates), since gS|X(s | x) = gSX(s, x)/ fX(x) and

gB|X(b | x) = gBX(b, x)/ fX(x). In the second step, we use the covariate data {X1, . . . , Xn} and pseudo

private values recovered previously to estimate the conditional value densities fC|X and fV|X . Again,

this needs the estimation of joint densities of valuation and covariates fCX and fVX . It is then possible

to extend our estimation results in Section 4 to this new two-step estimator. However, the new estima-

tor will suffer the “curse of dimensionality” with the introduction of auction-specific heterogeneity

X ∈ Rd. Moreover, for d > 1, the (interior and boundary) bias correction in kernel estimation of bid

densities gSX and gBX will be an issue in a multi-dimensional scenario.19 This issue is challenging, in

that, to our knowledge, little is known in the existing literature regarding the boundary bias correction

of kernel density estimators in a multi-dimensional setting.

6.2 Unobserved heterogeneity

Our framework can incorporate an auction-level unobserved heterogeneity. We omit the conditioning

on the observed covariates X to simplify our discussion. Let X̃ represent the unobserved heterogeneity,

namely X̃ is observed by all bidders but unobserved by the researchers. All bidders can hence

condition on it when bidding.

We consider that the buyer’s value (resp. seller’s cost) has a multiplicatively separable form of

V = X̃ · ε (resp. C = X̃ · δ) where ε and δ are private information to buyer and seller, respectively. Let

βB,x̃(·) and βS,x̃(·) be the buyer’s and seller’s bidding strategies under X̃ = x̃. Suppose that βB,1(·) and

βS,1(·) are the equilibrium bidding strategies under X̃ = 1, i.e. they satisfy the first order conditions

(3.1) and (3.2) when X̃ = 1. It can be verified that βB,x̃(·) = x̃ · βB,1(·/x̃) and βS,x̃(·) = x̃ · βS,1(·/x̃)

also satisfy (3.1) and (3.2) and are therefore equilibrium bidding strategies when X̃ = x̃.

19 Notice that the supports of S and B are finite. In addition, the bid densities can have discontinuity points in the interior of
the supports (see Figure 1c).
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Let B = βB,X̃(V) and S = βS,X̃(C). The above discussion yields B = X̃ · βB,1(V/X̃) = X̃ · βB,1(ε)

and S = X̃ · βS,1(C/X̃) = X̃ · βS,1(δ). Taking logarithms gives

log(B) = log(X̃) + log(βB,1(ε))

log(S) = log(X̃) + log(βS,1(δ)).

We can then apply the deconvolution approach of Krasnokutskaya (2011) to identify the distributions

of X̃, ε, and δ under some scale normalizations.

A similar strategy can be applied to identify the distributions of unobserved heterogeneity X̃ and

private information ε and δ when the buyer’s value (resp. seller’s cost) has an additively separable

form of V = X̃ + ε (resp. C = X̃ + δ).

6.3 Higher order bias reduction

When the value density function is smoother, we can also have higher order boundary (and interior)

bias reduction at the cost of more tedious calculations. Due to space limitations, we only illustrate the

idea of achieving higher order bias reduction here.

To achieve higher order boundary (and interior) bias reduction, we need to specify both a higher

order kernel and a proper functional form for the data transformation. For demonstration purposes,

suppose that {X1, X2, . . . , Xn} is a random sample drawn from a distribution with a density function

f ( · ) admitting up to R + 1 continuous bounded derivatives on a support of [0, x]. To simplify the

analysis, we further assume that the density f ( · ) has a discontinuity point only at 0, i.e. we assume

limx→x− f (x) = 0. Denote the transformation function by γ( · ).20 The (boundary-corrected) kernel

density estimator of f ( · ) with a generalized reflection is given by

f̂ (x) =
1

nh

n

∑
i=1

[
K
(

x− Xi
h

)
+ K

(
x + γ(Xi)

h

)]
,

where K( · ) is a kernel function on support [−1, 1], and h is a bandwidth parameter. Let ω( · ) =

f (γ−1( · ))/γ′(γ−1( · )) with γ( · ) being strictly increasing on [0,+∞) and (R + 1)-times continuously

differentiable. Then, for x = ρh with 0 6 ρ 6 1, the bias of f̂ at x can be obtained as

E f̂ (x)− f (x) = [ω(0)− f (0)]
∫ 1

ρ
K(t)dt +

R

∑
j=1

Wj

j!
hj + O

(
hR+1

)
, (6.2)

where

Wj = f (j)(0)

[
j

∑
l=1

(
j
l

)
(−1)lρj−l

∫ 1

−1
tlK(t)dt

]
+
[
ω(j)(0)− (−1)j f (j)(0)

] ∫ 1

ρ
(t− ρ)jK(t)dt.

Consequently, if we choose a kernel K( · ) of order (R + 1) and a transformation function γ( · )
such that (i) ω(0) = f (0), (ii) ω(j)(0) = (−1)j f (j)(0) for all j = 1, 2, . . . , R, (iii) γ′( · ) > 0 on [0,+∞),

20 In Section 4, we follow Zhang, Karunamuni, and Jones (1999) and Karunamuni and Zhang (2008) and employ a cubic
transformation function of γ(u) = u + d · u2 + A · d2 · u3 where d is the derivative of log-density at the boundary point.
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and (iv) (R + 1)-th derivative of γ( · ) exists, then the boundary bias E f̂ (x)− f (x) = O(hR+1) for any

x = ρh with 0 6 ρ 6 1. To see this, condition (i) eliminates the first term on the right-hand side of (6.2),

and condition (ii) together with (R + 1)-th order kernel K( · ) implies Wj = 0 for all j = 1, . . . , R which

makes the second term on the right-hand side of (6.2) zero. With the bias of order O(hR+1) on the

boundary, the kernel density estimator f̂ ( · ) with a generalized reflection then converges uniformly to

the true density function f ( · ) at a rate of Op

(
hR+1 +

√
log n/(nh)

)
on the entire support [0, x]. Note

that condition (ii) of γ( · ) requires the knowledge of f (j), j = 1, 2, . . . , R, which can be challenging in

estimation.

6.4 Estimation with transacted bids

We consider an estimation procedure closely following the identification strategy proposed in Sec-

tion 3.2.

We first recover the marginal bid distributions GB(·) and GS(·) on the transacted bids interval

[s, b] as

ĜB(b) = 1− P̂r(B > b|S = s), ĜS(s) = P̂r(S 6 s|B = b),

where P̂r(B > b|S = s) and P̂r(S 6 s|B = b) are some smoothing nonparametric estimators. The

densities are then estimated by the derivatives as ĝB(b) = Ĝ′B(b) and ĝS(s) = Ĝ′S(s).

In the second step, we recover the corresponding private values V̂i’s (resp. Ĉi’s) for the buyer

(resp. the seller) by the inverse bidding strategy of (3.5) (resp. (3.6)) for the bids on [s, b]. We can then

estimate the conditional value densities fV|V>s(·) and fC|C6b(·) given successful transaction. We can

also estimate the conditional value distribution functions Pr
(
V 6 v |V > s

)
, and Pr

(
C 6 c |C 6 b

)
according to (3.9). Their asymptotic properties are left for future research.

7 Conclusion

This paper studies nonparametric identification and estimation of double auction with bargaining.

It first gives all the restrictions of theoretical model on observed bid distributions, as well as the

sharp identified set of unobserved private value distributions when only transacted bids are used.

The latter identified set collapses to singleton when the non-transacted bids are also used. We then

propose a (boundary and interior) bias corrected two-step estimators of the buyer’s and the seller’s

value densities. The estimators are shown to achieve the optimal convergence rate. Our Monte Carlo

experiments demonstrate the significance of the bias correction (especially bias correction in the

interior of the support) in the two-step estimation of value densities.

We focus on the identification and estimation of double auction with bargaining. It is interesting

to design some nonparametric testing procedures in the context of double auctions, similar to those

testing procedures proposed in one-sided auctions, see, e.g., Fang and Tang (2014), Liu and Luo (2017),

Liu and Vuong (2021), and Jun and Zincenko (2022).
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Appendix

Appendix A collects the proofs of theorems, corollaries, and lemmas in the text. Appendix B

presents a supplementary material. Appendix C collects the proofs of results in Appendix B.

A Proofs of Theorems, Corollaries, and Lemmas in the Text

A.1 Proof of Lemma 1

First, we prove that v > s implies βB(v) 6 v.

When k = 0, that is, the transaction price is completely determined by the seller’s bid, a buyer

with private value v > s will get

πB(b, v) =
∫ b

s
(v− s)dGS(s)

from bidding b. Note that the integrand, v− s, is strictly decreasing in s, thus

∫ b

s
(v− s)dGS(s) 6

∫ +∞

s
max{v− s, 0}dGS(s). (A.1)

Since v > s, the equality in (A.1) holds if b = v, and the equality holds for all GS only if b = v. This

implies that, when k = 0, the truthful strategy βB(v) = v is the unique (weakly) dominant strategy

for the buyer.

When k ∈ (0, 1], we shall show that it is better for the buyer with value v > s to bid her value v

than any bid b > v. Since s is the lower bound of the support of GS, GS(s) = 0 and GS(v) > 0, then

πB(v, v)− πB(b, v) =
∫ v

s
[v− kv− (1− k)s]dGS(s)−

∫ b

s
[v− kb− (1− k)s]dGS(s)

=
∫ v

s
[v− kv− (1− k)s]dGS(s)−

∫ v

s
[v− kb− (1− k)s]dGS(s)

−
∫ b

v
[v− kb− (1− k)s]dGS(s)

=
∫ v

s
k(b− v)dGS(s)−

∫ b

v
[v− kb− (1− k)s]dGS(s)

= k(b− v)GS(v) +
∫ b

v
[kb + (1− k)s− v]dGS(s).

Since b > v and GS(v) > 0, the first term is positive and the second term

∫ b

v
[kb + (1− k)s− v]dGS(s) >

∫ b

v
[kb + (1− k)v− v]dGS(s) = k(b− v)[GS(b)− GS(v)] > 0.

This completes the proof of βB(v) 6 v.

To see that βB(v) < v for v > s if k > 0, note that by (2.1),

∂πB(b, v)
∂b

∣∣∣∣
b=v

= −kGS(v) < 0.
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It implies that there exists ∆ > 0 small enough such that πB(v− ∆, v) > πB(v, v), therefore, bidding

the true value for the buyer with private value v is no longer optimal, i.e. βB(v) 6= v. Since we have

already shown that βB(v) 6 v, the desired result follows.

In an analogous way, the second conclusion can be proved by showing that truthful bidding

strategy is dominant when k = 1, and is dominated by some β̃S(c) > c when k ∈ [0, 1) and c < b.

A.2 Proof of Theorem 1

Let βB( · ) and βS( · ) be the respective regular equilibrium bidding strategies of the buyer and the

seller that induce the bid distribution G.

By condition A1 of Assumption C, strictly increasing and continuous bidding strategies imply the

support of bid distribution is a rectangular region, namely [b, b]× [s, s] with b = βB(v), b = βB(v),

s = βS(c) and s = βS(c). To show that b 6 s and b 6 s, firstly suppose b > s, then any buyer bidding

b > s will be strictly inferior to just bidding s. Because this doesn’t make the buyer lose any trades but

the expected profit on each trade will increase by lowering the transaction price. This deviation is

contradicted by the assumption that (βB, βS) is an equilibrium. Applying similar argument to the

seller bidding s < b, we can prove the second conclusion s > b. Then we show that s < b. Suppose

not, then: (i) If b 6 s < v, the buyer with value v will have incentive to bid s+v
2 instead of b, because

by bidding s+v
2 he can get

π

(
s + v

2
, v
)
=
∫ s+v

2

s

[
v− k

s + v
2
− (1− k)s

]
dGS(s) =

k
2
(v− s) + (1− k)

∫ s+v
2

s
(v− s)dGS(s) > 0

while bidding b 6 s gives him zero expected profit. This contradicts the equilibrium requirement. (ii)

If c < b 6 s, then analogous argument can show that bidding b+c
2 is a profitable deviation for the seller

with value c, which presents a contradiction to the equilibrium condition, too. (iii) If b 6 c < v 6 s,

then condition A3 of Assumption C is contradicted because it requires that s = c < v = b. From the

above, C1 hold.

Because V and C are independent and because βB( · ) and βS( · ) are deterministic functions, it

follows that the bids, B = βB(V) and S = βS(C), are also independent. More precisely, since βB( · )
and βS( · ) are continuous and strictly increasing, so there exist inverse functions, β−1

B ( · ) and β−1
S ( · ),

which are also continuous and strictly increasing. Thus

G(b, s) = Pr(βB(V) 6 b, βS(C) 6 s)

= Pr(V 6 β−1
B (b), C 6 β−1

S (s))

= Pr(V 6 β−1
B (b))Pr(C 6 β−1

S (s)) = FV(β−1
B (b))FC(β−1

S (s)).

Define

GB(b) = FV(β−1
B (b)) (A.2)

GS(s) = FC(β−1
S (s)) (A.3)

for every b ∈ [b, b] and s ∈ [s, s]. Since β−1
B ( · ) is continuous and strictly increasing on [b, b] =
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[βB(v), βB(v)], we have GB ∈P[b,b] by (A.2) and the assumption FV ∈P[v,v]. Similar argument can

be applied to show GS ∈P[s,s]. Now we get C2.

In order to show C3 and C4, note that GB( · ) and GS( · ) defined in (A.2) and (A.3) must be the

distributions of observed (equilibrium) bids of the buyer and the seller, respectively. Now, βB( · ) and

βS( · ) must solve the set of first-order differential equations (3.1) and (3.2). Since (3.3) and (3.4) follow

from (3.1) and (3.2), then βB( · ) and βS( · ) must satisfy

ξ(βB(v), GS) = v, η(βS(c), GB) = c

for all v > s and all c 6 b. Noting that s = βS(c) and b = βB(v) and making the change of variable

v = β−1
B (b) and c = β−1

S (s), we obtain

ξ(b, GS) = β−1
B (b) (A.4)

η(s, GB) = β−1
S (s) (A.5)

for all b, s ∈ [s, b]. By condition A1 of Assumption C, both β−1
B ( · ) and β−1

S ( · ) are strictly increasing,

and by condition A3 ofAssumption C, βB( · ) is differentiable on [s, v] and so is βS( · ) on [c, b]. Thus C3

and C4 follow from the fact that ξ(s, GS) = s by (3.3), η(b, GB) = b by (3.4), and v = β−1
B (b) = ξ(b, GS),

c = β−1
S (s) = η(s, GB).

It is remained to show C5 and C6. Given b 6 b, for buyer with private value v such that βB(v) = b,

bidding any b′ ∈ [b, s] should not give him greater profit than bidding b because βB is the equilibrium

bidding strategy for the buyer. That is,

0 > πB(b′, v)− πB(b, v) =
∫ b′

s
[v− kb′ − (1− k)s]dGS(s)−

∫ b

s
[v− kb− (1− k)s]dGS(s)

= v[GS(b′)− GS(b)]− kb′GS(b′) + kbGS(b)− (1− k)
∫ b′

b
s dGS(s)

= k(v− b′)GS(b′)− k(v− b)GS(b)

+ (1− k)
[
(v− b′)GS(b′)− (v− b)GS(b) +

∫ b′

b
GS(s)ds

]
= (v− b′)GS(b′)− (v− b)GS(b) + (1− k)

∫ b′

b
GS(s)ds.

Because v = β−1
B (b) = ξ(b, GS) by (A.4), replacing v by ξ(b, GS) in the above inequality will yield

(3.7). Similarly, for seller with private value c such that βS(c) = s > s, using the argument that

any deviation of bidding s′ ∈ [b, s] would not be profitable, we can show that (3.8) must hold. This

completes the proof of C6 and the theorem.

A.3 Proof of Theorem 2

We show the identification of FV and FC in two steps. In the first step, we construct a pair of FV and

FC to rationalize the given G. In the second step, we show that such a pair is unique.
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Step 1. To show the sufficiency of C1–C4, define

FV(v) =


GB(v) if v < s

GB(ξ
−1(v, GS)) if s 6 v 6 ξ(b, GS)

1 if v > ξ(b, GS)

(A.6)

FC(c) =


0 if c < η(s, GB)

GS(η
−1(c, GB)) if η(s, GB) 6 c 6 b

GS(c) if c > b

(A.7)

and

v = b, v = ξ(b, GS), c = η(s, GB), c = s.

Condition C1 guarantees the functions ξ( · , GS) in (3.3) and η( · , GS) in (3.4) are well-defined. Since

b is the lower endpoint of the support of GB, so for all v 6 v = b, FV(v) = 0, and by definition,

FV(v) = 1 for all v > v = ξ(b, GS). Moreover, because FV(v) = GB(ξ
−1(ξ(b, GS), GS)) = GB(b) = 1,

FV(s) = GB(ξ
−1(ξ(s, GS), GS)) = GB(s), GB is continuous and strictly increasing on [b, b] by C2, and

ξ−1( · , GS) is continuous and strictly increasing on [ξ(s, GS), ξ(b, GS)] by C3. Then FV( · ) defined by

(A.6) is continuous and strictly increasing on [b, ξ(b, GS)] = [v, v]. Therefore FV is a valid absolutely

continuous distribution with support [v, v], i.e. FV ∈P[v,v] as required. We can also show FC ∈P[c,c]

in similar way.

We shall show that the distributions FV and FC of buyer’s and seller’s respective private values

can rationalize G in a sealed-bid k-double auction, i.e. GB(b) = FV(β−1
B (b)) on [b, b] and GS(s) =

FC(β−1
S (s)) on [s, s] for some regular equilibrium profile (βB, βS). By construction of FV and FC, we

have

GB(b) = FV(b)1(b 6 b < s) + FV(ξ(b, GS))1(s 6 b 6 b)

= FV

(
b1(b 6 b < s) + ξ(b, GS)1(s 6 b 6 b)

)
for b ∈ [b, b] and

GS(s) = FC(η(s, GB))1(s 6 s 6 b) + FC(s)1(b < s 6 s)

= FC

(
η(s, GB)1(s 6 s 6 b) + s1(b < s 6 s)

)
for s ∈ [s, s], where 1( · ) is the indicator function. Define

ξ∗(b, GS) ≡ b1(b 6 b < s) + ξ(b, GS)1(s 6 b 6 b),

η∗(s, GB) ≡ η(s, GB)1(s 6 s 6 b) + s1(b < s 6 s),

then by C3 and C4, ξ∗( · , GS) is continuous and strictly increasing on [b, b] and so is η∗( · , GB) on [s, s].
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Define bidding strategies

βB(v) =

v if v 6 v 6 s

ξ−1(v, GS) if s < v 6 v
(A.8)

βS(c) =

η−1(c, GB) if c 6 c < b

c if b 6 c 6 c
(A.9)

so that βB( · ) = ξ−1∗ ( · , GS) and βS( · ) = η−1∗ ( · , GB). By construction of these strategies, A1–A3 in

Assumption C are satisfied, and also, GB(b) = FV(β−1
B (b)) and GS(s) = FC(β−1

S (s)) so that G is the

induced bid distribution for (FV , FC) defined in (A.6) and (A.7) by the strategy profile (βB, βS) defined

above. Thus it remains to show (βB, βS) is indeed an equilibrium. We show that the optimal bid for

the buyer with private value v is βB(v). A similar argument shows that βS is optimal for the seller.

Obviously, if v 6 s, then the buyer cannot make an advantageous trade and bidding βB(v) = v

achieves zero as her greatest possible expected profit. Suppose v > s, since GS is the induced seller’s

bid distribution, then for bid b ∈ [s, b], by (2.1) we obtain

∂πB(b, s)
∂b

= −kGS(b) + (v− kb)gS(b)− (1− k)bgS(b)

= gS(b)
[

v−
(

b + k
GS(b)
gS(b)

)]
= gS(b) [v− ξ(b, GS)] .

Because gS(b) is positive, the monotonicity of ξ( · , GS) by C3 implies that ∂πB(b, v)/∂b > 0 for all

b < ξ−1(v, GS) and ∂πB(b, v)/∂b < 0 for all b > ξ−1(v, GS). Therefore, b = ξ−1(v, GS) = βB(v) is the

unique maximizer of the buyer’s expected profit in [s, b]. Now we show that the buyer would not

want to choose bid within [b, s], either. Recall that we have already shown that C5 is equivalent to

πB(b′, v) 6 πB(b, v) for any v > b and any b′ ∈ [b, s] when b = ξ−1(v, GS) = βB(v) in the proof of

Theorem 1, this is established straightforwardly because choosing a bid within [b, s] is profitable only

for the buyer with private value v > b. Finally, given s is the highest seller’s bid, any buyer’s bid

greater than s will be dominated by s. Hence, FV and FC indeed rationalize G in a sealed-bid k-double

auction.

Step 2. From the proof of Theorem 1, we know that ξ( · , GS) = β−1
B ( · ) and η( · , GB) = β−1

S ( · ) on

[s, b] when FV( · ) and FC( · ) exist. Since FV( · ) = GB(βB( · )) and FC( · ) = GS(βS( · )), then FV( · ) =
GB(ξ

−1∗ ( · , GS)) and FC( · ) = GS(η
−1∗ ( · , GB)). Because ξ( · , GS) is uniquely determined by GS( · )

and η( · , GB) is uniquely determined by GB( · ), it follows that ξ∗( · , GS) and η∗( · , GB) are uniquely

determined by G. Hence, the private value distribution (FV , FC) that rationalizes G is unique.

This hence establishes the identification of FV and FC from any given G ∈ PD satisfying C1–

C6.

A.4 Proof of Lemma 2

It is straightforward to see that conditions C3–C4 are implied by C7–C8. It then suffices to show that

C5 and C6 are implied by C7 and C8.

We shall only show C7, more precisely, the monotonicity of ξ( · , GS), implies C5. A similar

27



argument can show that C8 implies C6. For buyer with private value v, since

∂πB(b, v)
∂b

= gS(b) [v− ξ(b, GS)] ,

then strictly increasing ξ( · , GS) on [s, s] ensures that for any b ∈
(
ξ−1(v, GS), s

]
, ∂πB(b, v)/∂b < 0,

therefore, the expected profit of the buyer πB(b, v) is strictly decreasing in the buyer’s bid. For

b′ ∈ [b, s] and b 6 b such that ξ(b, GS) > b′, let v = ξ(b, GS), then it follows from the above conclusion

that

b′ > b > b = ξ−1(v, GS) ⇒ πB(b′, v) 6 πB(b, v),

which is equivalent to C5 as shown in the proof of Theorem 1.

A.5 Proof of Corollary 1

By Theorem 1, C1–C4 hold. Let m′ = Pr(s 6 S 6 B 6 b). By definition of G2, D1 is the direct corollary

of C1. Using g2(b, s) = g(b, s)/m′ and g(b, s) = gB(b)gS(s) by C2, we have

g2(b, s)g2(b′, s′) = g2(b, s′)g2(b′, s) =
gB(b)gB(b′)gS(s)gS(s′)

m′2
,

so D2 holds. D3 and D4 are implied by C3 and C4, respectively.

A.6 Proof of Corollary 2

By condition D1 and Lemma 1, we have c 6 s < b 6 v, namely condition E1 holds.

Notice that, by D3 and D4, (3.9) is equivalent to

FV(ξ(b, GS))− FV(s)
1− FV(s)

=
GB(b)− GB(s)

1− GB(s)
,

FC(η(s, GB))

FC(b)
=

GS(s)
GS(b)

(A.10)

for (b, s) ∈ [s, b]2.

We next establish condition E2 by showing (A.10). According to the proof of Theorem 2, G can

only be rationalized by (FV , FC) defined in (A.6) and (A.7) which imply

FV(ξ(b, GS)) = GB(b), FC(η(s, GB)) = GS(s) (A.11)

for s = ξ−1(s, GS) 6 b 6 b and s 6 s 6 η−1(b, GB) = b. By (A.11) and using ξ(s, GS) = s,

η(b, GB) = b, we have condition (A.10) to hold for all FV and FC. We hence establish condition E2.

In addition, according to Theorem 1, G satisfies conditions C5 and C6. Given the equilibrium

strategies are regular, we have GS(s) = FC(s) for all s > b and GS(s) = FC(η(s, GB)) for all s 6 b,

therefore, (3.10) immediately follows from (3.7). A similar argument can show (3.11) follows from

(3.8), too. We therefore establish condition E3.

The sharpness of identified set is implied by the rationalization result of Corollary 1. This completes

the whole proof.
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A.7 Proof of Lemma 3

First, we will establish the following two properties on bidding strategies: (M1) under Assumption F,

any regular equilibrium strategies βB and βS are twice continuously differentiable on [s, v] and [c, b],

respectively; (M2) for any v ∈ [s, v] and any c ∈ [c, b], β′B(v) > εB > 0 and β′S(c) > εS > 0. To show

(M1), we need to rewrite (3.1) and (3.2) as follows:

β′S(c) =
fC(c)

[
β−1

B (βS(c))− βS(c)
]

k · FC(c)
, (A.12)

β′B(v) =
fV(v)

[
βB(v)− β−1

S (βB(v))
]

(1− k) · [1− FV(v)]
. (A.13)

By definition, any pair of regular equilibrium strategies βB and βS is continuously differentiable

on [s, v] and [c, b], respectively (see Assumption C). Consequently, under Assumption F, (A.12) and

(A.13) imply that β′S( · ) and β′B( · ) are continuously differentiable on [c, b] and [s, v], respectively. This

further implies that βS and βB are twice continuously differentiable on [c, b] and [s, v]. This completes

the proof of (M1).

Now we establish (M2). By definition of regular equilibrium, the seller’s and buyer’s bidding

strategies are continuously differentiable with positive derivative on [c, b] and [s, v], respectively (see

condition A2 of Assumption C), i.e., β′S( · ) and β′B( · ) are continuous and positive on [c, b] and [s, v].

By extreme value theorem, β′S( · ) and β′B( · ) have positive minimum and maximum on [c, b] and [s, v],

respectively. The conclusion of (M2) therefore follows.

By (A.4) and (A.5), conditions (M1) and (M2) imply that both ξ( · , GS) and η( · , GB) are twice

continuously differentiable on [s, b]. Note that

gB(b) =
fV(β−1

B (b))

β′B(β−1
B (b))

, gS(s) =
fC(β−1

S (s))

β′S(β−1
S (s))

.

In addition, fV and fC are bounded away from 0 by Assumption F, and β′B and β′S are bounded away

from 0 by (M2). The conclusion of part (i) then follows. Because GB(b) = FV(β−1
B (b)) = FV(ξ(b, GS))

for b ∈ [s, b], the result about GB in part (ii) follows from that both FV( · ) and ξ( · , GS) are twice

continuously differentiable on [s, b]. The result about GS in part (ii) can be shown similarly. Lastly, to

prove part (iii), we note that (3.3) and (3.4) give

gS(s) = k
GS(s)

ξ(s, GS)− s
, gB(b) = (1− k)

1− GB(b)
b− η(b, GB)

.

Since every term on the right-hand side is twice continuously differentiable, the desired conclusion

follows.
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A.8 Proof of Lemma 4

For part (i), since ŝ > s, b̂ 6 b and |ŝ− s| = Op(1/n), |b̂− b| = Op(1/n), the estimation error of ŝ and

b̂ is negligible. Similar to Theorem 2.1 of Karunamuni and Zhang (2008), it can be shown that on [s, b],

sup
b∈[s,b]

|ĝB(b)− gB(b)| = Op
(
h2

B +
√

log n/(nhB)
)
, sup

s∈[s,b]
|ĝS(s)− gS(s)| = Op

(
h2

S +
√

log n/(nhS)
)
,

where both convergence rates can be simplified as Op
(
(log n/n)2/5) under Assumption H. Although

gB (or gS) is discontinuous at s (or b), we can similarly use the boundary-corrected density kernel

estimator to estimated gB (or gS) on interval [b, s] (or interval [b, s]) and with the same argument we

can get that ĝB (or ĝS) converges to the true density at the same rate as on interval [s, b], then the

desired uniform consistency results on the whole support of gB or gS follow.

We next show part (ii). We shall show the convergence rate of supi |V̂i − Vi|. The result for

supi |Ĉi − Ci| can be shown analogously.

It follows from the definition of ξ(b, GS) and (4.1) that

1(Vi ∈ [s, v])|V̂i −Vi| = 1(Bi ∈ [s, b]) · k
∣∣∣ ĜS(Bi)

ĝS(Bi)
− GS(Bi)

gS(Bi)

∣∣∣
= 1(Bi ∈ [s, b]) · k

∣∣∣ ĜS(Bi)− GS(Bi)

gS(Bi)
− GS(Bi)

gS(Bi)2

[
ĝS(Bi)− gS(Bi)

]
+ o
(
ĜS(Bi)− GS(Bi)

)
+ o
(

ĝS(Bi)− gS(Bi)
)∣∣∣

6 1(Bi ∈ [s, b])
{ |ĜS(Bi)− GS(Bi)|

gS(Bi)
+

GS(Bi)

gS(Bi)2 |ĝS(Bi)− gS(Bi)|

+ o
(
|ĜS(Bi)− GS(Bi)|

)
+ o
(
|ĝS(Bi)− gS(Bi)|

)}
6 sup

Bi∈[s,b]

{ |ĜS(Bi)− GS(Bi)|
gS(Bi)

+
GS(Bi)

gS(Bi)2 |ĝS(Bi)− gS(Bi)|

+ o
(
|ĜS(Bi)− GS(Bi)|

)
+ o
(
|ĝS(Bi)− gS(Bi)|

)}
6

supb∈[s,b] |ĜS(b)− GS(b)|
αS

+
1

α2
S

sup
b∈[s,b]

|ĝS(b)− gS(b)|

+ o
(

sup
b∈[s,b]

|ĜS(b)− GS(b)|
)
+ o
(

sup
b∈[s,b]

|ĝS(b)− gS(b)|
)
.

(A.14)

where the last inequality holds since, for any b, gS(b) > αS and GS(b) 6 1. Then,

sup
i

1(Vi ∈ [s, v])|V̂i −Vi| 6
supb∈[s,b] |ĜS(b)− GS(b)|

αS
+

1
α2

S
sup

b∈[s,b]
|ĝS(b)− gS(b)|

+ o
(

sup
b∈[s,b]

|ĜS(b)− GS(b)|
)
+ o
(

sup
b∈[s,b]

|ĝS(b)− gS(b)|
)
.
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Given that supb∈[s,b] |ĜS(b)− GS(b)| 6 supb∈R |ĜS(b)− GS(b)| = Op(log n/
√

n), it follows from

part (i) that

sup
i

1(Vi ∈ [s, v])|V̂i −Vi| = Op
(
(log n/n)2/5). (A.15)

Since by regular equilibrium assumption, the buyer with private value v < s will bid b = v and hence

V̂i = Bi = Vi. Then we can extend the result in (A.15) to all Vi ∈ [v, v] so that

sup
i
|V̂i −Vi| = sup

i
1(Vi ∈ [s, v])|V̂i −Vi| = Op

(
(log n/n)2/5).

This completes the whole proof.

A.9 Proof of Theorem 3

We shall only show the uniform convergence result of | f̂V(·)− fV(·)|. The result of | f̂C(·)− fC(·)| can

be shown similarly, and is hence omitted.

Let CV be a closed inner subset of [v, v], and f̃V(·) be the (infeasible) one-step boundary-corrected

kernel density estimator which uses the unobserved true private values Vi instead of V̂i. Applying

similar argument to establish part (i) of Lemma 4, we can show that supv∈[v,v] | f̃V(v) − fV(v)| =
Op

(
(log n/n)1/5

)
given a bandwidth hV = λV(log n/n)1/5. Since f̂V(v)− fV(v) = [ f̂V(v)− f̃V(v)] +

[ f̃V(v)− fV(v)], it remains to show that supv∈CV

∣∣ f̂V(v)− f̃V(v)
∣∣ = Op

(
(log n/n)1/5).

Let C ′V =
⋃

v∈CV
[v− ∆, v + ∆] and C ′′V =

⋃
v∈C ′V

[v− ∆, v + ∆] for some ∆ > 0. By construction,

C ′V and C ′′V are also closed, and CV ⊂ C ′V ⊂ C ′′V . Since CV is a closed inner subset of [v, v], ∆ can be

chosen small enough such that C ′′V ⊂ [v, v]. Now by part (ii) of Lemma 4, for v ∈ CV and n large

enough, f̂V(v) uses at most observations V̂i in C ′V and for which Vi is in C ′′V . Because for any v ∈ CV ,

f̃V(v) uses at most Vi in C ′′V and both f̂V(v) and f̃V(v) are numerically identical to the standard kernel

density estimator, we obtain

f̂V(v)− f̃V(v) =
1

nhV

n

∑
i=1

1(Vi ∈ C ′′V )
[
KV
(v− V̂i

hV

)
− KV

(v−Vi
hV

)]
.

A second-order Taylor expansion gives

∣∣ f̂V(v)− f̃V(v)
∣∣ = ∣∣ 1

nhV

n

∑
i=1

[
1(Vi ∈ C ′′V )(V̂i −Vi) ·

1
hV

K′V
(v−Vi

hV

)]
+

1
2nhV

n

∑
i=1

[
1(Vi ∈ C ′′V )(V̂i −Vi)

2 · 1
h2

V
K′′V
(v− Ṽi

hV

)]∣∣
where Ṽi is some point between V̂i and Vi. By triangular inequality,

∣∣ f̂V(v)− f̃V(v)
∣∣ 6 1

nh2
V

n

∑
i=1

1(Vi ∈ C ′′V )
∣∣V̂i −Vi

∣∣ · ∣∣K′V(v−Vi
hV

)∣∣
+

1
2nh3

V

n

∑
i=1

1(Vi ∈ C ′′V )
(
V̂i −Vi

)2 ·
∣∣K′′V(v− Ṽi

hV

)∣∣. (A.16)
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Because
∣∣∣K′′V ( v−Ṽi

hV

)∣∣∣ 6 supu |K′′V(u)|, then the right-hand side of (A.16) is bounded by

1
hV

sup
i

1(Vi ∈ C ′′V )
∣∣V̂i −Vi

∣∣ · 1
nhV

n

∑
i=1

∣∣K′V(v−Vi
hV

)∣∣+ 1
2h3

V
sup

i
1(Vi ∈ C ′′V )

∣∣V̂i −Vi
∣∣2 · sup

u
|K′′V(u)|.

By part (ii) of Lemma 4 and Assumption H,

∣∣ f̂V(v)− f̃V(v)
∣∣ 6 Op

(
(log n/n)1/5) · 1

nhV

n

∑
i=1

∣∣K′V(v−Vi
hV

)∣∣+ Op
(
(log n/n)1/5) · sup

u
|K′′V(u)|.

(A.17)

It can be shown that 1
nhV

∑n
i=1
∣∣K′V( v−Vi

hV

)∣∣ converges uniformly to fV(v)
∫ ∞
−∞ |K′V(u)|du thus it is

bounded uniformly. Moreover, supu |K′′V(u)| < ∞ by Assumption G. It then follows that supv∈CV
| f̂V(v)−

f̃V(v)| = Op
(
(log n/n)1/5). The desired conclusion therefore follows.

B Supplementary Material

B.1 Identification of Pricing Weight k from Quantiles of Transaction Price

Let Ψk(p) ≡ Pr(P 6 p) be the distribution function of transaction price, where the subscript k

indicates the value of this function could also depend on the pricing weight k. Since Ψk(p) =

Pr(kB + (1− k)S ≤ p | s ≤ S ≤ B ≤ b), for 0 < k < 1, we have

Ψk(p) =


∫ p

s

∫ p−(1−k)s
k

s
g2(b, s)db ds, if p ≤ kb + (1− k)s,

1−
∫ b

p

∫ b

p−kb
1−k

g2(b, s)ds db, if p > kb + (1− k)s,

(B.1)

where the density function g2(b, s) = g(b, s)/ Pr(s 6 S 6 B 6 b) is the joint density of transacted bids.

When k = 0, since P = S,

Ψ0(p) =
∫ p

s

∫ b

s
g2(b, s)db ds, (B.2)

and similarly, when k = 1,

Ψ1(p) =
∫ p

s

∫ b

s
g2(b, s)ds db =

∫ p

s

∫ p

s
g2(b, s)db ds. (B.3)

In order to establish the conditions on recovering k from the distributions of bids and price, we

firstly show the following lemma.

Lemma 5. For any fixed p ∈ (s, b), Ψk(p) is continuous and strictly decreasing in k ∈ [0, 1].

Proof. See Appendix C.1.

The intuition behind Lemma 5 is given in Figure 4a. This lemma implies that the distribution

function (and hence the quantile function) of transaction price is continuous and strictly monotonic

in k. If we know some αth-quantile of the transaction price P, say pα, such that s < pα < b and
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Ψ1(pα) ≤ α ≤ Ψ0(pα), then by Lemma 5, there exists a unique k∗ ∈ [0, 1] such that

Ψk∗(pα) = α. (B.4)

Thus, the value of k can be obtained by solving equation (B.4) for k∗.21 Such an idea is shown by

Figure 4b.

Seller’s bid, S

B

Buyer’s bid

B = S

b b

s

s

A1 A2 A3

A4

p

p

k2

k1

k = 0

k = 1

(a) Intuition of Lemma 5. Here 0 < k1 < k2 < 1,

then Ψk1
(p) =

∫∫
A1∪A2∪A3

g2(b, s)db ds, Ψk2 (p) =∫∫
A1∪A2

g2(b, s)db ds.

k1

Ψ1(pα)

k∗

Ψk∗(pα) = α
α

Ψ0(pα)

Ψk(pα)

0
(b) Recovering k from a price quantile pα.

Figure 4: Identification of pricing weight k from quantiles of transaction price

B.2 Density estimator with bias correction

We give the general definition of our bias corrected kernel density estimator in this section. For a

random sample {X1, . . . , Xn} that is drawn from a distribution F with a continuously differentiable

density f and support [x, x], the boundary corrected kernel density estimator of f on interval [a1, a2] ⊆
[x, x] is defined as

f̂ (x)=
1

nh

n

∑
i=1

1(a16Xi6 a2)
[
K
( x−Xi

h
)
+K
( x−a1+γ̂1(Xi−a1)

h
)
+K
( a2−x+γ̂2(a2−Xi)

h
)]

, (B.5)

where

γ̂1(u) = u + d̂1u2 + Ad̂2
1u3, γ̂2(u) = u + d̂2u2 + Ad̂2

2u3,

21 Notice that, for fixed k and p, Ψk(p) is identified from the distribution of transacted bids by (B.1).
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with

d̂1 =
1
h′
{

log
[ 1

nh′
n

∑
i=1

1(a1 6 Xi 6 a2)K(
h′ − Xi + a1

h′
) +

1
n2

]
− log

[
max

( 1
nh′0

n

∑
i=1

1(a1 6 Xi 6 a2)K0(
a1 − Xi

h′0
),

1
n2

)]}
,

d̂2 =
1
h′
{

log
[ 1

nh′
n

∑
i=1

1(a1 6 Xi 6 a2)K(
h′ + Xi − a2

h′
) +

1
n2

]
− log

[
max

( 1
nh′0

n

∑
i=1

1(a1 6 Xi 6 a2)K0(
Xi − a2

h′0
),

1
n2

)]}
,

and

K0(u) = (6 + 18u + 12u2) · 1(−1 6 u 6 0), h′0 =
[ ( ∫ 1

−1 u2K(u)du
)2 ·
∫ 0
−1 K2

0(u)du( ∫ 0
−1 u2K0(u)du

)2 ·
∫ 1
−1 K2(u)du

]1/5
· h′.

B.3 Asymptotic results with smoother private value densities

This section provides supplementary asymptotic results when the private value densities have up to

R-th order derivatives for R > 2. These results provide the uniform convergence rates of bid density

estimate, pseudo value estimate, and value density estimate on any closed inner subset of a given

support under the private value densities smoother than the ones in Section 4. They are parallel to the

asymptotic properties of Guerre, Perrigne, and Vuong (2000)’s two-step estimator of private value

density in first-price auctions. Note that our estimators (with bias correction) actually degenerate

to the estimators without bias correction in the interior of a support when the sample size is large

enough, thus all asymptotic results of this section can also be viewed as the ones for the estimators

without bias correction.

We state the assumptions under which the supplementary asymptotic results are established.

Assumption F’. FV and FC admit up to R + 1 continuous bounded derivatives on [v, v] and [c, c], respectively.

In addition, fV(v) > αV > 0 for all v ∈ [v, v]; fC(c) > αC > 0 for all c ∈ [c, c].

Assumption G’. (i) The kernels KB, KS, KV , KC are symmetric with support [−1, 1] and have twice continuous

bounded derivatives. (ii) KB, KS, KV and KC are of order R + 1, R + 1, R, and R.

Assumption H’. The bandwidths hB, hS, hV , hC are of the form:

hB =λB
(

log n/n
)1/(2R+3), hS =λS

(
log n/n

)1/(2R+3), hV =λV
(

log n/n
)1/(2R+3), hC =λC

(
log n/n

)1/(2R+3),

where the λ’s are positive constants. The parameters AB, AS, AV , AC > 1/3 and the secondary bandwidths are

of the form:

h′B = τBn−1/(2R+3), h′S = τSn−1/(2R+3), h′V = τVn−1/(2R+3), h′C = τCn−1/(2R+3),

where the τ’s are positive constants.
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Assumptions F to H can be viewed as a special case of Assumptions F’ to H’ with R = 1,

respectively.

The first lemma generalizes Lemma 3 to the case with private densities admitting up to R-th order

derivatives.

Lemma 6. Given Assumption F’, the distributions of regular equilibrium bids GB and GS satisfy:

(i) for any b ∈ [b, b] and any s ∈ [s, s], gB(b) > αB > 0, gS(s) > αS > 0;

(ii) GB and GS admit up to R + 1 continuous bounded derivatives on [s, b];

(iii) gB and gS admit up to R + 1 continuous bounded derivatives on [s, b].

The proof of Lemma 6 is a straightforward extension of the proof for Lemma 3 in Appendix A.7, and

is hence omitted here.

The second lemma studies the uniform convergence rate of bid density estimator and pseudo

private values on a close inner subset of transacted interval.

Lemma 7. Under Assumption E and Assumptions F’ to H’,

(i). for any (fixed) closed inner subset Cg of [s, b],

sup
b∈Cg

|ĝB(b)− gB(b)| = Op
(
(log n/n)(R+1)/(2R+3)), sup

s∈Cg

|ĝS(s)− gS(s)| = Op
(
(log n/n)(R+1)/(2R+3)).

(ii). For any (fixed) closed inner subsets CV of [s, v] and CC of [c, b],

sup
i

1(Vi ∈ CV)|V̂i−Vi|=Op
(
(log n/n)(R+1)/(2R+3)), sup

i
1(Ci ∈ CC)|Ĉi−Ci|=Op

(
(log n/n)(R+1)/(2R+3)).

Proof. See Appendix C.3.

Lemma 7 shows that, if the primary bandwidths hB and hS are of order (log n/n)1/(2R+3) according to

Assumption H’, both the bid density estimators and pseudo private values achieve a rate of uniform

convergence, (log n/n)(R+1)/(2R+3), on any closed inner subset of transacted interval.

The third result is about the uniform convergence rate of the two-step estimator of value density

on a closed inner subset excluding s and b.

Proposition 1. Under Assumption E and Assumptions F’ to H’, for any (fixed) closed inner subsets CV of

[v, v]\{s} and CC of [c, c]\{b},

sup
v∈CV

| f̂V(v)− fV(v)| = Op
(
(log n/n)R/(2R+3)), sup

c∈CC

| f̂C(c)− fC(c)| = Op
(
(log n/n)R/(2R+3)).

Proof. See Appendix C.4.

Proposition 1 establishes the uniform consistency of our two-step estimator of the bidders’ private

value density on any closed inner subset of value support excluding s (or b). The rate of convergence

coincides with the optimal convergence rate of Guerre, Perrigne, and Vuong (2000) for the first-price

auctions. However, it does not provide the uniform convergence rate of value density on a closed

inner subset containing s (or b), although the value density is continuous at this interior point s (or b).
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C Proofs of Lemmas and Proposition in Supplementary Material

C.1 Proof of Lemma 5

First, note that when k ∈ (0, 1], we can rewrite (B.1) and (B.3) together as

Ψk(p) =
∫ p

s

∫ min
(

p−(1−k)s
k ,b

)
s

g2(b, s)db ds. (C.1)

Keep p ∈ (s, b) fixed and define a function ϕ as the inner integral in (C.1), i.e.

ϕ(k, s) =
∫ min

(
p−(1−k)s

k ,b
)

s
g2(b, s)db, k ∈ (0, 1], s ∈ [s, p]. (C.2)

Since g2(b, s) is integrable, so ϕ is continuous in the upper limit of integral. And since the upper

limit, min
(

p−(1−k)s
k , b

)
, is continuous in k, so ϕ is continuous in k. Note that g2(b, s) > 0 because

the interval of integration is in the support of G, and note that min
(

p−(1−k)s
k , b

)
≤ b, thus for any

k ∈ (0, 1],

0 ≤ ϕ(k, s) ≤
∫ b

s
g2(b, s)db ≡ ϕ̄(s), ∀ s ∈ [s, p].

Therefore, for any k ∈ (0, 1], for any sequence {kn} in (0, 1] such that kn → k as n→ ∞, by continuity

of ϕ in k, we have ϕ̃n(s) ≡ ϕ(kn, s) converges pointwise to ϕ̃(s) ≡ ϕ(k, s) on [s, p]. Since ϕ̄(s) is

integrable, by dominated convergence theorem, as n→ ∞,

∫ p

s
ϕ̃n(s)ds→

∫ p

s
ϕ̃(s)ds,

hence, Ψkn(p)→ Ψk(p).

To see the (right) continuity at k = 0, we just need to rewrite (B.1) and (B.2) as

Ψk(p) = 1−
∫ b

p

∫ b

p−kb
1−k

g2(b, s)ds db, 0 ≤ k <
p− s
b− s

and define

ψ(k, b) = −
∫ b

p−kb
1−k

g(b, s)ds, k ∈
[

0,
p− s
b− s

)
, b ∈ [p, b].

Then applying analogous argument, we have ψ is continuous in k so that for sequence {kn} in
[
0, p−s

b−s

)
such that kn → 0, the sequence {ψ̃n(b) ≡ ψ(kn, b)} converges pointwise to ψ̃(b) ≡ ψ(0, b). Since

{ψ̃n(b)} is dominated by ψ̄(b) ≡
∫ b

s g(b, s)ds, we finally can get Ψkn(p)→ Ψ0(p).

It remains to show the monotonicity of Ψk(p) in k. Suppose 0 ≤ k1 < k2 ≤ 1, then by (B.1), (B.2),

and (B.3):

(i) If k2 < p−s
b−s

, then

Ψk1(p)−Ψk2(p) =
∫ b

p

∫ b− b−p
1−k1

b− b−p
1−k2

g2(b, s)ds db > 0
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due to b−p
1−k2

> b−p
1−k1

.

(ii) If k1 ≥ p−s
b−s

, then

Ψk1(p)−Ψk2(p) =
∫ p

s

∫ s+ p−s
k1

s+ p−s
k2

g2(b, s)db ds > 0

due to p−s
k2

< p−s
k1

.

(iii) If k1 < p−s
b−s
≤ k2, then

Ψk1(p)−Ψk2(p) =
∫ p

s

∫ s+ (p−s)(b−s)
p−s

s+ p−s
k2

g2(b, s)db ds +
∫ b

p

∫ b− b−p
1−k1

b− (b−p)(b−s)
b−p

g2(b, s)ds db > 0,

where the first term is non-negative and the second one is positive.

C.2 Proof of Lemma 6

First, we will establish the following two properties on bidding strategies: (M1) under Assumption F,

any regular equilibrium strategies βB and βS admit up to R + 1 continuous and bounded derivatives

on [s, v] and [c, b], respectively; (M2) for any v ∈ [s, v] and any c ∈ [c, b], β′B(v) > εB > 0 and

β′S(c) > εS > 0. To show (M1), we need to rewrite (3.1) and (3.2) as follows:

β′S(c) =
fC(c)

[
β−1

B (βS(c))− βS(c)
]

k · FC(c)
, (C.3)

β′B(v) =
fV(v)

[
βB(v)− β−1

S (βB(v))
]

(1− k) · [1− FV(v)]
. (C.4)

By definition, any pair of regular equilibrium strategies βB and βS is continuously differentiable

on [s, v] and [c, b], respectively (see Assumption C). Consequently, under Assumption F’, (C.3) and

(C.4) imply that β′S( · ) and β′B( · ) are continuously differentiable on [c, b] and [s, v], respectively. This

further implies that βS and βB are twice continuously differentiable on [c, b] and [s, v]. Again, under

Assumption F, (A.12) and (A.13) imply that β′S( · ) and β′B( · ) are twice continuously differentiable,

and hence βS and βB admit up to third continuous bounded derivatives on [c, b] and [s, v], respectively.

This argument can go on until we conclude that βS and βB admit up to R + 1 continuous bounded

derivatives, respectively, on [c, b] and [s, v]. This completes the proof of (M1).

Now we establish (M2). By definition of regular equilibrium, the seller’s and buyer’s bidding

strategies are continuously differentiable with positive derivative on [c, b] and [s, v], respectively (see

condition A2 of Assumption C), i.e., β′S( · ) and β′B( · ) are continuous and positive on [c, b] and [s, v].

By extreme value theorem, β′S( · ) and β′B( · ) have positive minimum and maximum on [c, b] and [s, v],

respectively. The conclusion of (M2) therefore follows.

It was shown earlier that ξ( · , GS) and η( · , GB) solve

∀ b, s ∈ [s, b] : βB(ξ(b, GS)) = b, βS(η(s, GB)) = s,
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it follows from (M1), (M2) and Lemma C1 of Guerre, Perrigne, and Vuong (2000) that both ξ( · , GS)

and η( · , GB) admit up to R + 1 continuous and bounded derivatives on [s, b]. Note that

gB(b) =
fV(β−1

B (b))

β′B(β−1
B (b))

, gS(s) =
fC(β−1

S (s))

β′S(β−1
S (s))

.

In addition, fV and fC are bounded away from 0 by Assumption F, and β′B and β′S are bounded by (M2).

The conclusion of part (i) then follows. Because GB(b) = FV(β−1
B (b)) = FV(ξ(b, GS)) for b ∈ [s, b],

the result about GB in part (ii) follows from that both FV( · ) and ξ( · , GS) have R + 1 continuous and

bounded derivatives on [s, b]. The result about GS in part (ii) can be proven similarly. Lastly, to prove

part (iii), we note that (3.3) and (3.4) give

gS(s) = k
GS(s)

ξ(s, GS)− s
, gB(b) = (1− k)

1− GB(b)
b− η(b, GB)

.

Since every term on the right-hand side admits up to R + 1 continuous and bounded derivatives, the

desired result follows.

C.3 Proof of Lemma 7

For part (i), we shall only show the convergence rate of supb∈Cg
|ĝB(b)− gB(b)|. The rate of sups∈Cg

|ĝS(s)−
gS(s)| can be shown similarly.

Note ŝ > s, b̂ 6 b and as n → ∞, ŝ
p−→ s and b̂

p−→ b. Given limn→∞ hB = 0 by Assumption H’,

for sufficiently large n, Cg ⊂ [ŝ + hB, b̂− hB] and therefore the boundary-corrected kernel density

estimator ĝB will be numerically identical to the standard kernel density estimator g̃B (without

boundary correction). Thus, using the existing results for the standard kernel density estimator (see

Li and Racine (2006), page 31, Theorem 1.4), we have under Assumption E and Assumptions F’ to H’,

sup
b∈Cg

|ĝB(b)− gB(b)| = Op

(
hR+1

B +

√
log n
nhB

)
= Op

((
log n

n

) R+1
2R+3

)
.

We next show part (ii). We only establish the convergence rate of supi 1(Vi ∈ CV)|V̂i −Vi|. The

case of supi 1(Ci ∈ CC)|Ĉi − Ci| can be shown in a similar way.

Define CB = {b ∈ [s, b] | ξ(b, GS) ∈ CV}. Because ξ( · , GS) is a strictly increasing continuous

function and CV is a closed inner subset of [s, v], then CB is also a (fixed) closed inner subset of [s, b].

Following an argument similar to (A.14) by replacing [s, v] and [s, b] with CV and CB, respectively, we

can get

1(Vi ∈ CV)|V̂i −Vi| 6
supb∈CB

|ĜS(b)− GS(b)|
αS

+
1

α2
S

sup
b∈CB

|ĝS(b)− gS(b)|

+ o

(
sup
b∈CB

|ĜS(b)− GS(b)|
)
+ o

(
sup
b∈CB

|ĝS(b)− gS(b)|
)

.
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which implies that

sup
i

1(Vi ∈ CV)|V̂i −Vi| 6
supb∈CB

|ĜS(b)− GS(b)|
αS

+
1

α2
S

sup
b∈CB

|ĝS(b)− gS(b)|

+ o

(
sup
b∈CB

|ĜS(b)− GS(b)|
)
+ o

(
sup
b∈CB

|ĝS(b)− gS(b)|
)

.

Since supb∈CB
|ĜS(b)− GS(b)| 6 supb∈R |ĜS(b)− GS(b)| = Op(log n/

√
n), the desired result follows

from part (i) and Op

(
max

(
log n/

√
n, (log n/n)(R+1)/(2R+3)

))
= Op

(
(log n/n)(R+1)/(2R+3)

)
.

C.4 Proof of Proposition 1

We will only establish the result of | f̂V(·)− fV(·)|. The case of | f̂C(·)− fC(·)| can be shown similarly.

We consider the first case that CV is a closed inner subset of [s, v]. Let f̃V(v) define the (infeasi-

ble) one-step boundary-corrected kernel density estimator which uses the unobserved true private

values Vi instead of V̂i. Similar to part (i) of Lemma 7, we can show that supv∈CV
| f̃V(v)− fV(v)| =

Op
(
(log n/n)R/(2R+3)) under a bandwidth of hV = λV(log n/n)1/(2R+3). Since f̂V(v) − fV(v) =

[ f̂V(v)− f̃V(v)]+ [ f̃V(v)− fV(v)], it remains to show supv∈CV
| f̂V(v)− f̃V(v)| = Op

(
(log n/n)R/(2R+3)).

Let C ′V =
⋃

v∈CV
[v− ∆, v + ∆] and C ′′V =

⋃
v∈C ′V

[v− ∆, v + ∆] for some ∆ > 0. Similar to the proof

of Theorem 3 in Appendix A.9, for small enough ∆ and large enough n, we can obtain the following

inequality analogous to (A.16)

∣∣∣ f̂V(v)− f̃V(v)
∣∣∣ 6 1

nh2
V

n

∑
i=1

1(Vi ∈ C ′′V )
∣∣V̂i −Vi

∣∣ · ∣∣∣∣K′V (v−Vi
hV

)∣∣∣∣
+

1
2nh3

V

n

∑
i=1

1(Vi ∈ C ′′V )
(
V̂i −Vi

)2 ·
∣∣∣∣K′′V (v− Ṽi

hV

)∣∣∣∣ . (C.5)

Because
∣∣∣K′′V ( v−Ṽi

hV

)∣∣∣ 6 supu |K′′V(u)|, then the right-hand side of (C.5) is bounded by

1
hV

sup
i

1(Vi ∈ C ′′V )
∣∣V̂i −Vi

∣∣ · 1
nhV

n

∑
i=1

∣∣∣∣K′V (v−Vi
hV

)∣∣∣∣+ 1
2h3

V
sup

i
1(Vi ∈ C ′′V )

∣∣V̂i −Vi
∣∣2 · sup

u
|K′′V(u)|.

By part (ii) of Lemma 7 and Assumption H’,

∣∣∣ f̂V(v)− f̃V(v)
∣∣∣ 6 Op

((
log n

n

) R
2R+3

)
· 1

nhV

n

∑
i=1

∣∣∣∣K′V (v−Vi
hV

)∣∣∣∣+Op

((
log n

n

) 2R−1
2R+3

)
· sup

u
|K′′V(u)|.

(C.6)

It can be shown that 1
nhV

∑n
i=1

∣∣∣K′V ( v−Vi
hV

)∣∣∣ converges uniformly to fV(v)
∫ ∞
−∞ |K′V(u)|du thus it

is bounded uniformly. Moreover, supu |K′′V(u)| < ∞ by Assumption G. Since R > 1 implies
2R−1
2R+3 > R

2R+3 , it follows that supv∈CV
| f̂V(v) − f̃V(v)| = Op

(
(log n/n)R/(2R+3)

)
and therefore

supv∈CV
| f̂V(v)− fV(v)| = Op

(
(log n/n)R/(2R+3)

)
.

Now we consider the other case that CV is a closed inner subset of [v, s] when s > v. By regular

equilibrium assumption, the buyer with private value v < s will bid b = v, thus we have V̂i = Bi = Vi.
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Thus f̂V is in fact the one-step boundary-corrected kernel estimator for fV on [v, s]. Similar to part (i)

of Lemma 7, we can show that supv∈CV
| f̂V(v)− fV(v)| = Op

(
(log n/n)R/(2R+3)

)
.

Since any given closed inner subset CV ⊆ [v, v]\{s} is a union of at most two closed inner subsets

respectively belonging to the two cases above, the desired conclusion therefore follows.
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